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Abstract

Objective: To determine whether Clostridioides difficile infection (CDI) exhibits spatiotemporal interaction and clustering.

Design: Retrospective observational study.

Setting: The University of Iowa Hospitals and Clinics.

Patients: This study included 1,963 CDI cases, January 2005 through December 2011.

Methods: We extracted location and time information for each case and ran the Knox, Mantel, and mean and maximum component size tests
for time thresholds (T= 7, 14, and 21 days) and distance thresholds (D= 2, 3, 4, and 5 units; 1 unit= 5–6 m). All tests were implemented using
Monte Carlo simulations, and random CDI cases were constructed by randomly permuting times of CDI cases 20,000 times. As a counter-
factual, we repeated all tests on 790 aspiration pneumonia cases because aspiration pneumonia is a complication without environmental
factors.

Results: Results from the Knox test andmean component size test rejected the null hypothesis of no spatiotemporal interaction (P< .0001), for
all values of T and D. Results from the Mantel test also rejected the hypothesis of no spatiotemporal interaction (P< .0003). The same tests
showed no such effects for aspiration pneumonia. Our results from the maximum component size tests showed similar trends, but they were
not consistently significant, possibly because CDI outbreaks attributable to the environment were relatively small.

Conclusion: Our results clearly show spatiotemporal interaction and clustering amongCDI cases and nonewhatsoever for aspiration pneumo-
nia cases. These results strongly suggest that environmental factors play a role in the onset of some CDI cases. However, our results are not
inconsistent with the possibility that many genetically unrelated CDI cases occurred during the study period.

(Received 28 May 2019; accepted 2 November 2019; electronically published 31 January 2020)

Clostridioides difficile infection (CDI) is one of the most common
healthcare-associated infections as well as the leading cause of
healthcare-associated diarrhea.1,2 Accordingly, CDI is an important
cause of excess morbidity andmortality,2,3 and cases of CDI increase
the cost of healthcare.4 Exposure to antibiotics is the major risk
factor for CDI.5,6 However, additional individual-level risk factors
have been identified, including advanced age,7–9 greater underlying
severity of illness,5,6 increased levels of comorbidities,5,6 and
medications designed to decrease gastric acid levels.10

In addition to individual-level risk factors, the environment,
especially in hospitals, has been implicated as a risk factor for

CDI. In general, CDI pressure, the increasing risk of CDI
acquisition with increasing numbers of CDI patients, has been
documented at both the ward11 and hospital levels.12 More
specifically, evidence for underlying environmental CDI con-
tamination include reports of C. difficile spores on high-touch
surfaces in healthcare settings,13,14 patient skin,15,16 and hands
of healthcare workers.17,18 In addition, C. difficile contamination
increases in rooms occupied by patients with symptomatic CDI;
thus, room assignments (eg, patients placed in a room with
previous occupant who had CDI) are also associated with
increased risk of CDI acquisition.19 Evidence that the environ-
ment is a contributor to increased risk for CDI has led to infection
control recommendations for disinfection, isolation, and hand
washing with soap and water, especially in outbreak settings.20

The emphasis on the environment’s role in CDI has recently
been subject to scrutiny. Whole-genome sequencing studies have
shown that, at least in nonoutbreak settings, a substantial propor-
tion of C. difficile isolates are not genetically related.21 Other work
on screening asymptomatic patients for C. difficile carriage report
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that colonization established before hospitalization may also be an
important risk factor for subsequent cases of hospital-based
CDI.22,23 These results raise questions regarding the proportion
of CDI attributable to the healthcare environment.

One effective approach to quantify the environment’s
contribution to CDI is to measure the spatiotemporal interac-
tion and clustering of CDI cases because such spatiotemporal
clustering suggests that environmental factors may be contrib-
uting to the spread of CDI. This approach has been widely used
outside hospital settings to understand risk factors for several
infectious diseases.24 However, applying this approach within
the hospital is challenging due to the lack of fine-grained
spatial data necessary to estimate distances between pairs of
in-hospital CDI cases. In this article, we sought to determine
whether the CDI cases observed at the University of Iowa
Hospitals and Clinics (UIHC) exhibit spatiotemporal interaction
and clustering after adjusting for effects that are either purely
spatial or purely temporal.

Methods

Our analysis was based on a fine-grained dataset we assembled
on operations at the University of Iowa Hospitals and Clinics
(or UIHC, a 700-bed comprehensive academic medical and
regional referral center in Iowa City) from January 2005 through
December 2011. The dataset contains both architectural and
in-patient data: admission, discharge, and transfer records;
diagnostic codes; and clinical test results. We constructed the set
of CDI cases for in-patients by extracting (1) the date of positive
CDI diagnosis and (2) the patient’s room in the hospital at the time
of positive CDI test. CDI diagnosis was determined via laboratory
test. A C. difficile toxin test was used during January 2005–April
2008; a C. difficile toxin A and B test was used during May
2008–December 2009, and a C. difficile toxin PCR test was
used thereafter. Formally, a CDI case can be viewed as a triple
(p, r, d) where p is a patient, r is a room in the hospital, and d
is a day in the period (January 2005–December 2011) such that
patient p tested positive for CDI on day d while occupying room
r. Our dataset included 1,963 total CDI cases.

To determine whether these CDI cases exhibited spatiotempo-
ral interaction and clustering, we sought to accurately estimate the
distance between pairs of rooms in the hospital. Starting with
architectural drawings, we “discretized” the UIHC hospital space
and constructed a hospital graph. The results from this discretiza-
tion process have also been reported elsewhere.25 Each room in the
hospital is represented by a node (larger spaces, such as hallways,
are subdivided into smaller room-sized polygons represented as
individual nodes), and edges (or hops) are added between pairs
of nodes corresponding to spatial units between which direct
physical passage is possible. Each edge (hop) corresponds to a
walking distance of 5–6 m. Edges respect architectural barriers
(eg, walls), so 2 adjacent rooms that do not share a doorway are
not connected by an edge. The hospital graph comprised 18,961
nodes and 23,442 edges. The hospital graph imposes a distance
metric on the UIHC space, and distances along the shortest paths
in this graph correspond to the shortest walking distances in the
UIHC space (Fig. 1).

Our analysis was based on spatiotemporal interaction and
clustering tests, all of which correct for solely spatial or solely
temporal effects. Among these tests, 3 were performed using

a CDI case proximity graph, consisting of nodes representing
CDI cases and edges connecting 2 nodes if they occurred within
T days and within distanceD in the hospital graph of each other,
where T ≥ 0 and D ≥ 0 were integer parameters (Fig. 2).

We used the Knox test to compare the observed number of
pairs of CDI cases that occurred both within T days and within
distance D of each other to the distribution of the number of
pairs of cases within these time and distance thresholds of each
other, conditioned on the absence of spatiotemporal interaction.26

In other words, we compared the number of edges in the observed

CDI case proximity graph, denoted CPGCDI;obs
ðT;DÞ , to the distribution

of the number of edges in a random CDI case proximity

graph denoted CPGCDI;rand
ðT;DÞ . To calculate this distribution, we ran

Monte Carlo simulations with the time stamps of cases randomly
permuted. Notably, permuting the time stamps left purely
spatial correlations and purely temporal correlations intact
while disrupting the joint spatiotemporal structure. We used
extensions of the Knox test to explicitly test for other aspects
of spatiotemporal structure. To test for burstiness, an important
facet of infection diffusion involving periods of significant
activity followed by periods of inactivity, we implemented
the mean component size test.27,28 A component in the CDI case
proximity graph is a maximal set of cases that are all reachable
from each other via paths composed of edges in the graph. A
graph can have many components, and in the mean component
size test, we compared the mean size of components in
CPGCDI;obs

ðT;DÞ to the distribution of mean component size of

CPGCDI;rand
ðT;DÞ . As in the Knox test, we used Monte Carlo simula-

tions with the time stamps randomly permuted to calculate
these expectations. The maximum component size test was
similar (see Appendix A online). Finally, we also performed
the Mantel test,30 in which we computed the Pearson correla-
tion between the spatial and temporal distance matrices of
the CDI cases and compared this with the correlation between
a randomly permuted spatial distance matrix and the (unper-
muted) temporal distance matrix. If the 2 observed distance
matrices had high correlation, then randomization would result
in correlation that was consistently smaller.

As a counterfactual experiment, and as a “stress test” for our
approach, we repeated all of the tests just described on aspira-
tion pneumonia, a complication that occurs when food, stom-
ach acid, or saliva are inhaled into the lungs. Because aspiration
pneumonia is not infectious, we expected to see very different
results for aspiration pneumonia than for CDI. For the 6-year
period between January 2007 and December 2013, 790 aspira-
tion pneumonia cases were reported at UIHC. Unlike CDI,
however, hospital records associate aspiration pneumonia with
a hospitalization rather than a precise date of onset. Therefore,
we used hospital prescription data to yield a proxy for an onset
date. Starting from the list of antibiotics commonly used to treat
aspiration pneumonia,31–33 we defined the onset of aspiration
pneumonia as the first time one of these antibiotics (Table 1)
was prescribed for a patient diagnosed with aspiration pneumonia.
This method yielded a total of 535 distinct aspiration pneumonia
cases with associated time stamps; patient rooms were then
determined based on the time stamps and were used to con-
struct the observed aspiration pneumonia case proximity graph
CPGAP;obs

ðT;DÞ .
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Fig. 1. Each path in the hospital graph from a node s to a node t corresponds to a valid walking route in the hospital from the spatial unit corresponding to node s to
the spatial unit corresponding to node t. For example, the top figure shows 2 rooms, 4082-A and 4049, whose shortest path distance in the UIHC graph is 11 hops
(a hop is an edge in the hospital graph). The bottom figure shows rooms 4082-A and 4084, whose shortest path distance in the UIHC is 3 hops.
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Results

Our preliminary inspection revealed that CDI cases did exhibit
some spatial clustering; certain medical units such as general
medicine, oncology, and the medical intensive care unit (MICU)
had many more CDI cases than others, such as neurology.
Spatial patterns may also have occurred in CDI cases due to
number of beds per room. Of the 709 patient rooms at the
UIHC, 342 are singles, 280 are doubles, 68 are triples, and 19
are quads or larger. We verified that our UIHC CDI cases did
not exhibit seasonality, even though case counts at the regional
and national level do.34 Finally, an important temporal variation
in the number of CDI cases was due to a change in the CDI test
from C. diff toxin A and B to C. diff toxin PCR in December
2009, which significantly increased apparent CDI rates.
However, because our tests control for purely spatial and purely
temporal correlations, this variation should not have affected
our results. No substantial or hospital-wide changes to infection
control policies (eg, contact isolation policies or room cleaning
policies) occurred during the study period.

We ran the Knox test with time thresholds T= 7, 14, and 21
and distance thresholds D= 2, 3, 4, and 5. The results for
T= 14 (Fig. 3, left) show that the observed number of pairs of
CDI cases that were simultaneously close to each other, both in
space and in time, were consistently larger than all of the corre-
sponding expected values obtained in simulation (P< .0001 in

all cases). For example, for T= 14, D= 2, the observed value is
287 (shown by the blue dot) and the value obtained in simulation
has distribution shown by the box whisker plot (mean, 157.902;
SD, 12.5193). This result is a rejection of the null hypothesis of
no spatiotemporal interaction among CDI cases. The results are
strikingly different for aspiration pneumonia (Fig. 3, right). In
all 4 cases shown for T= 14, the observed number of aspiration
pneumonia case pairs that are proximate both in space and time
was no greater than the expected number of proximate aspiration
pneumonia case pairs over the 20,000 time permutations. These
results indicate a clear spatiotemporal interaction for CDI, but
none whatsoever for aspiration pneumonia.

We next present results from the mean component size and the
maximum component size tests on CPGCDI;obs

ðT;DÞ for T= 7, 14, and 21

and D= 2, 3, 4, and 5. For T= 14 and all D= 2, 3, 4, and 5 (Fig. 4,
left) the observed mean component sizes were larger than the
corresponding mean component sizes for all 20,000 permutations
(thus, by definition, P= 0 in all cases). For example, for T= 14,
D= 2 (Fig. 4, left) the observed mean component size was
1.11661 (shown as a blue dot), and this value was larger than
the complete distribution (shown as box whisker plot) of mean
component sizes (mean, 1.06513; SD, 0.00571) obtained via
simulations. This result is a rejection of the null hypothesis
(with P< .0001) that there is no spatiotemporal clustering of
CDI cases. In contrast, for aspiration pneumonia, the observed

Fig. 2. CPGCDI;obs
ð14;5Þ : CDI case proximity graph for T= 14 days and path length of D= 5 (� 30m). The graph contains 1,963 nodes, corresponding to CDI cases at the

UIHC during January 2005– December 2011. Its 682 edges correspond to pairs of cases occurring with 14 days and distances of nomore than 5 hops (� 30m) from one
another. The resulting CDI case proximity graph contains 1,519 components, 1,229 of which are single nodes. The mean component size is 1.29 and the maximum
component size is 11. A component of size 11 is enlarged and shown on the left. The CDI cases in this component occurred over a roughly 2-month period
(April 30–June 21, 2010) in the GMed (4JPE) unit; 9 of these cases occurred in a “pod” of 7 adjacent patient rooms, whereas 2 occurred in a single-patient room
in a separate “pod.”
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mean component sizes inCPGAP;obs
ðT;DÞ mostly appear in the lower half

of the estimated distribution of mean component sizes of random

CPGAP;rand
ðT;DÞ (Fig. 4, right). These results imply significant spatio-

temporal clustering of CDI cases, but none for aspiration pneumo-
nia, at least as measured by mean component sizes in the case
proximity graphs. The results for the maximum component size
test appear in Appendix A (online).

Finally, we applied theMantel test to compare the correlation of
the temporal distance matrix with the spatial distance matrix for
the observed data to the distribution of correlations obtained from
randomly permuting the spatial (but, not temporal) distance
matrix, 20,000 times. For CDI (Fig. 5, left), the Pearson correlation
coefficient of the temporal distance matrix and the spatial distance
matrix is far to the right of the mean correlation obtained by
permuting the spatial distance matrix, rejecting the null hypothesis
of no spatiotemporal correlation with P< .0003. In contrast, the
corresponding test for aspiration pneumonia (Fig. 5, right) yields
an observed Pearson correlation coefficient of 0.007, not far from

Fig. 3. The Knox test for CDI (left) and
aspiration pneumonia (right) are shown for time
threshold T= 14 days, and distance threshold
D= 2, 3, 4, and 5 hops. The test results were
derived from 20,000 random permutations of
the time stamps of the cases. The box plots show
the distribution of the Knox test statistics,
and the blue dots correspond to the Knox test
statistics on the observed data. There is a
striking difference in the results for CDI and
aspiration pneumonia.

Fig. 4. The mean component size test for CDI
(left) and for aspiration pneumonia (right) are
shown for time threshold (T = 14 days) and dis-
tance threshold (D= 2, 3, 4, and 5 hops). The test
results were derived from 20,000 random permu-
tations of the time stamps of the cases. The box-
plots show the distributions of the test statistics
obtained from the randompermutations and the
blue dots corresponds to the test statistics on
the observed data.

Fig. 5. Pearson correlation coefficient (0.01924,
black line) for the spatial and temporal distance
matrices of CDI cases in comparison with the dis-
tribution of correlation coefficient (mean is the
red line), when one of the matrices is permuted
randomly. The plot is the result of randomly per-
muting thematrix 20,000 times. The figure on the
right shows the results of the same computation
for aspiration pneumonia cases.

Table 1. Most Frequently Prescribed Antibiotics, Sorted by Frequency, for
Patient Visit Records Marked with the Aspiration Pneumonia Complication
Code During 2007–2013a

Antibiotic Count

Piperacillin/Tazobactam 427

Metronidazole (systemic) 154

Clindamycin (systemic) 94

Meropenem 88

Moxifloxacin 86

Ceftriaxone 83

Ampicillin sod/Sulbactam sod 57

Cefotaxime 5

Imipenem/Cilastatin 2

aA total of 790 patient visits were coded with aspiration pneumonia. Because some patients
were prescribed >1 antibiotic from the list, the sum of the prescriptions (996) exceeds the
number of aspiration pneumonia codes.
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the mean (0.006) of the distribution of correlations with 1 matrix
randomly permuted (P= .452).

Our tests yield substantively similar results for T= 7 and T= 21
withD = 2, 3, 4 and 5. These results are summarized in Appendix B
(online).

Discussion

The importance of hospital design and room assignments have
been previously cited as factors in the transmission of infectious
diseases.19,35,36 However, only a small number of studies in the
literature have focused on the spread of infection and outbreaks
within healthcare facilities.24 Such studies are hampered by the
difficulty of defining spatial relationships inside healthcare
institutions, where architectural features, (eg, walls, elevators,
nurses’ stations) make it complicated to compute distances
between cases. A peripheral contribution of this paper is to point
a way forward, using distances computed from readily available
CAD drawings of healthcare facilities.

Our results help bridge 2 categories of CDI investigations,
those that implicate the environment in the spread of CDI11,19

and those that report that a substantial proportion of CDI cases
are genetically unrelated,21 thereby discounting environmental
factors. Our results, obtained from a variety of spatiotemporal
statistical tests, provide compelling evidence that spatiotemporal
interaction as well as clustering occur among CDI cases at the
UIHC. These results suggest that environmental factors are in
play. On the other hand, our case proximity graphs contain many
connected components (for various T and D values), each with a
relatively small maximum size component. Specifically, overall
T and D values considered, the largest maximum component size
was 13 (~0.66% of the number of cases). Thus, our results are not
inconsistent with the possibility of many genetically unrelated
cases, with relatively small outbreaks.

Our results hold despite routine infection control precautions
and environmental cleaning practices in place at the UIHC
(eg, patients admitted with diarrhea are placed in contact isolation).
We verified that placement of patients does not cause additional
spatiotemporal interaction or clustering by verifying that our
results held even when we defined CDI cases as patients with
positive CDI test at least 48 hours after admission (Appendix D
online).

In future work, we plan to use whole-genome sequencing to
investigate whether genetically related strains of CDI are more
common within space–time CDI clusters than among cases that
do not cluster. Notably, in at least 1 investigation,37 clusters of
genetically related CDI cases did not correspond to clusters of
CDI case identified by spatiotemporal tests. However, a much
closer look at this connection (or lack thereof) is needed. More
specifically, this particular study37 was conducted in the somewhat
unique environment of a pediatric hospital, and results in other
hospital settings may differ. Results may also vary in time: during
periods when CDI is endemic, environmental factors may be
insignificant, whereas during periods of outbreak they may be
significant. Another direction of future work is incorporating
connections between patients via shared healthcare workers.38

Thus, joining clusters detected from case proximity graphs to
staffing records could help us better understand and quantify
the role of healthcare workers in the transmission of healthcare-
associated infections.

Our study has several limitations. First, due to the retrospec-
tive nature of this study, we were not able to perform genetic

sequencing of CDI cases within and outside of clusters, which will
be a future extension of our work. Second, we were unable to
incorporate other sources of information into this investigation
(eg, staffing patterns, patient trajectories through the hospital).
However, in future work, such covariates could be incorporated
into space–time tests. Finally, onset of CDI infectivity may precede
the date of a positive CDI test. It may be important to incorporate
this type of uncertainty to obtain more robust spatiotemporal tests.

In conclusion, through a variety of statistical tests, we have
shown that CDI cases at the hospital during January 2005–
December 2011 exhibit significant spatiotemporal interactions
and clustering. In contrast, aspiration pneumonia cases in a
similar time frame do not show any spatiotemporal interactions
or clustering behavior. Together, these results strongly suggest
that environmental factors play a significant role in the onset
for some cases of CDI. Finally, in addition to CDI, our approach
could be extended to other infections within the hospital and even
non-infectious outcomes with localized environmental factors
(eg, falls, medication errors).
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