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Abstract—Clostridium Difficile Infection (CDI) is a contagious
healthcare-associated infection that imposes a significant burden
on the healthcare system. In 2011 alone, half a million patients
suffered from CDI in the United States, 29,000 dying within
30 days of diagnosis. Determining which hospital patients are
at risk for developing CDI is critical to helping healthcare
workers take timely measures to prevent or detect and treat
this infection. We improve the state of the art of CDI risk
prediction by designing an ensemble logistic regression classifier
that given partial patient visit histories, outputs the risk of
patients acquiring CDI during their current hospital visit. The
novelty of our approach lies in the representation of each patient
visit as a collection of co-occurring and chronologically ordered
pairs of events. This choice is motivated by our hypothesis
that CDI risk is influenced not just by individual events (e.g.,
being prescribed a first generation cephalosporin antibiotic), but
by the temporal ordering of individual events (e.g., antibiotic
prescription followed by transfer to a certain hospital unit).
While this choice explodes the number of features, we use a
randomized greedy feature selection algorithm followed by BIC
minimization to reduce the dimensionality of the feature space,
while retaining the most relevant features. We apply our approach
to a rich dataset from the University of Iowa Hospitals and Clinics
(UIHC), curated from diverse sources, consisting of 200,000 visits
(30,000 per year, 2006-2011) involving 125,000 unique patients, 2
million diagnoses, 8 million prescriptions, 400,000 room transfers
spanning a hospital with 700 patient rooms and 200 units. Our
approach to classification produces better risk predictions (AUC)
than existing risk estimators for CDI, even when trained just
on data available at patient admission. It also identifies novel
risk factors for CDI that are combinations of co-occurring and
chronologically ordered events.

I. INTRODUCTION

Clostridium Difficile Infection (CDI) is a healthcare-
associated infection that is a major cause of morbidity and
is associated with significant healthcare costs. In 2011 alone,
half a million patients suffered from CDI in the United States,
and 29,000 died within 30 days of diagnosis [1]. Moreover,
CDI is increasing: there were only an estimated 139,000 cases
in 2000. Furthermore, mortality from CDI has increased at an
even greater rate: as recently as 2000, there were only 3,000
CDI-related deaths [2].

Predicting which patients will develop CDI could help to
confirm cases more quickly and perhaps prevent outbreaks by
helping to determine when to isolate infected patients. Several
researchers have developed models for predicting CDI cases
using medical records. Dubberke et al introduced a model
for predicting CDI for any patient admitted to the hospital
[3]. Garey et al developed a CDI-prediction model, but only
for patients receiving broad-spectrum antibiotics [4]. Wiens et
al. have built models that compute evolving risk scores for
patients [5, 6], and another model that only uses data that
were available within 24 hours of a patient’s admission to the
hospital [7]. In addition, there are simplified risk scores that
can be calculated using only 4-5 features [8].

Predicting outcomes from medical records is difficult for
a number of reasons. Medical records consist a variety of
data types [9], and medical records often contain inaccura-
cies, biases and censoring [10]. In addition, medical records
evolve over time. Some researchers have mined frequent
events or common patterns of clinical events using partial
orders [11, 12], sequences [13], and temporal abstractions [14],
but these approaches have shortcomings as well, including
inflexible representations of time and poor interaction between
the classifier and the patterns discovered [15, 16].

In this manuscript, we propose a methodology for pre-
dicting patient-level CDI by mining clinical events that occur
during the hospital stay as well as information that is known at
the time of admission. Our classifier consists of an ensemble of
logistic regression models, as in [17], fitted with regularization,
as in [18]. The novelty of our approach, however, lies in the
description of the visit using co-ocurring and chronologically
ordered pairs of events, a simplification of the partial order
patterns used in [11, 12]. The contributions of our work to
the literature are multiple. First, our method performs better
at predicting CDI than alternative methods. Second, we were
able to produce moving risk curves for CDI, meaning that
the risk predicted by our classifiers increases if the patient
is going to develop CDI in the following days. Third, by
representing patient visits as pairs of events, our classifier
returns human-interpretable data. Fourth, we showed how to
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successfully make use of hierarchical relations among the
features to produce more informative models. And fifth, we
contribute with a methodology for building classifiers for the
situation of class imbalance and high dimensionality.

II. OVERVIEW OF CDI

CDI is a hospital-associated infection that causes diarrhea
in affected patients. CDI is caused by Clostridium difficile (c.
diff.), a bacterium that is commonly present in the intestines of
healthy people [2, 19]. Antimicrobials disrupt the normal flora
in the intestine allowing c. diff. to grow and produce toxins
that result in CDI. Risk factors for CDI include antibiotic
use, especially clindamycin, cephalosporins and quinolones
[20, 21], advanced age [21], and underlying severity of illness
[3, 20].

C. diff. and its spores can be spread from one patient to
another via the hands of healthcare workers and by contact
with the hospital environment. Indeed, c. diff. spores can sur-
vive in the healthcare environment for long periods of time and
are resistant to most cleaning agents [22]. Long hospital stays
are associated with CDI [21]. Also, staying a room previously
occupied by a CDI patient, or staying on a unit with a high
rate of CDI have also been associated with CDI [3, 23, 24].
However, recent work has suggested that symptomatic cases
are often not genetically related, at least during non-outbreak
periods, raising fundamental questions about the scientific
knowledge with respect to c.diff, particularly about the role
of spread within hospitals [25, 26].

III. THE DATA

A. Structured medical records data

Our data consist of HIPAA-compliant anonymized medical
records representing patient-visit data (i.e., encounter data),
containing diagnoses, prescriptions, procedures, etc., associ-
ated with each admission from October 2006 to December
2011 at the University of Iowa Hospitals and Clinics (UIHC),
collected from billing data, patient flow data, and architec-
tural drawings. We collected data on 208,902 visits involving
126,265 distinct patients. Visits consist of two types of data:
(i) general visit data, and (ii) clinical event data. General visit
data include patient demographics, visit information, service
information, attending healthcare workers, and diagnoses. Pa-
tient demographics include information such as age, gender,
ethnicity, and the zip code where the patient resided at the
time of admission. Visit information includes the admission
and discharge dates, the type and source of admission, and
the disease severity and mortality. Service information refers
to the service providing most of the care (e.g., psychiatry,
dermatology, etc.). Attending healthcare workers include the
lead physician and assistants. Diagnoses contain the conditions
present on admission, those that developed during care, and
those of unclear onset (it is not always possible to accurately
determine when a disease originated).

Clinical event data represent what occurred during the
visit. We consider four types of event data: prescriptions,
which associate a patient with a medication; procedures,
which associate a patient with an operation and the associated
physician; transfers, which associate a patient with a physical
location; and positive CDI laboratory tests, which tell us when

Item Avg Range
Age (years) 43.27 0–105
Length of stay (days) 5.83 1–462
Room transfers 2.04 0–102
Diagnoses 7.41 0–40

present on admission† 4.13 0–35
acquired during visit† 0.64 0–19

Prescriptions 37.28 0–5513
unique medications 9.51 0–107

Procedures 2.78 0–26
unique procedures 2.73 0–18

Physicians 2.94 1–15
† Not all diagnoses can be classified in either category.

Table I: Statistics of patient visits.

Figure 1: Partial view of the hierarchies associated with
diagnoses, procedures, and prescriptions.

healthcare workers identified that the patient had CDI. Table I
presents sample visit statistics.

Diagnoses, procedures, and prescriptions are associated
with hierarchies, as illustrated by Fig. 1. Diagnoses and pro-
cedures are categorized into ICD-9 and CCS codes. We prefer
CCS codes [27], which group ICD-9 codes by similarity. CCS
codes are grouped by chapters, providing a natural ontology.
Prescriptions are also associated with hierarchies. Each pre-
scription is associated with a medication, which in turn belongs
in a three level-hierarchy comprised of: major class, minor
class, and subminor class. We describe medications through
the subminor class, because we deemed the medication id to
be unnecessarily specific.

B. CDI at the hospital

Preliminary analysis of our data confirms general knowl-
edge of types of patients at high risk for CDI and typical
clinical management of CDI. Fig. 2 shows the rate of CDI in
patients by age group, in bins of 5 years. CDI cases tend to be
more frequent for the elderly, as consistent with the literature
[2, 19]. Community-acquired CDI, i.e., present on admission
to the hospital, totals 486 cases (26.25% of visits associated
with CDI). The fact that CDI at admission corresponds roughly
to 1/5 of the cases, suggests that other cases of CDI may be
caused by acquisition of c.diff outside the hospital as well.
Table II shows the most common comorbidities, antibiotics
prescribed and procedures performed on patients diagnosed
with CDI. The conditions presented in Table IIa are known to
co-occur with CDI [28]. But the presence of CDI introduces
changes in their care: antibiotic prescription increases roughly
2.7 times after the development of CDI. Table IIb shows the
most common antibiotics prescribed to patients who develop
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Figure 2: Proportion of admissions that result in CDI in the
UIHC, stratified by age at time of admission.

Condition/diagnosis Frequency
Acute kidney failure, unspecified† 245
Acidosis† 178
Unspecified septicemia 155
Acute respiratory failure 121
Pneumonia, organism unspecified 120
Unspecified pleural effusion 113
Septic shock 99
Congestive heart failure, unspecified 91
Unspecified protein-calorie malnutrition† 88
Hyposmolality and/or hyponatremia† 71
† Associated with diarrhea and intestinal failure, consistent with CDI [29].

(a) Ten most frequent diagnoses of CDI patients.

Frequency
Antibiotic name Before CDI After CDI
Metronidazole (systemic) 668 5879
Vancomycin 1120 4354
Piperacillin/tazobactam 777 1254
Ciprofloxacin (systemic) 641 1113
Cefepime 555 1018

(b) Five most frequent antibiotics prescribed to patients after CDI.

Frequency
Procedure name Before CDI After CDI
Injection of antibiotic† 228 134
Transfusion of packed cells 110 97
Computerized axial tomography of abdomen† 22 53
Parenteral infusion of nutritional substances† 42 45
Transfusion of platelets 48 44
† Procedures consistent with occurrence of CDI.

(c) Five most frequent procedures performed on patients after CDI.

Table II: Most frequent diagnoses, antibiotics, and procedures
associated with patients that suffered CDI during their visit.

CDI, both before and after the diagnosis. Metronidazole and
vancomycin are associated with the largest increases in pre-
scription rates after the diagnosis of CDI. Three of the five
procedures shown in Table IIc are consistent with treatment of
CDI. Note that the frequency of antibiotic injections decreases
after CDI develops, which is consistent with the switch to the
oral route for the treatment of CDI.

Fig. 3 provides a simplified description of a real case of
CDI in the hospital. A child is admitted to the hospital for a
surgery intended to repair the aorta. Shortly upon admission,
the child is sent to the surgery waiting room, given blood
medications, anesthesia, and Cephalosporin antibiotics. The
child undergoes surgery, and is sent to the pediatric ICU
with a catheter and oxygen. The next day, the child starts a
regimen of histamine2 antagonists and diuretics, medications
which can treat nausea and dehydration symptoms. Day 6
arrives, the laboratory confirms CDI, and the child is treated

Figure 3: A case of CDI in the hospital. A child is admitted
to the hospital for a scheduled cardiac surgery and develops
CDI while in care.

with Metronidazole. This treatment appears to be successful
as the child leaves the pediatric ICU the following day and is
discharged one day later (day 8).

IV. FEATURE ENGINEERING

A. Overview of the classification approach

Our approach to classification consists in converting the
original data, which mostly consists of temporal, event data,
into a static equivalent that can be described in tabular format,
as shown in Fig. 4a, as has been previously reported [5–7, 11–
14, 30–33]. Our instances consist of days in a visit, not of
whole visits. After describing the visits in tabular format, we
pass these data to the classifier. Our classifier, described in
Sec. V, consists of an ensemble of logistic regression models.
The model produced by the classifier consists of the collection
of individual logistic regression models. The risk estimate of
CDI is, then, computed from the probabilities generated by the
logistic regression models.

B. Bare events and pairs of events

We now formally define the notion of events, visits, ordered
pairs of events, and translate these into features.

Definition 1. We define a visit V as a set of events correspond-
ing to a patient’s stay in the hospital. Each event (t,e) ∈V is
comprised of a time t and an event action e.

Example 1. The first visit shown in Fig. 4a is described as
Vex = {(1,A),(1,B),(2,A),(3,C),(3,D)}.

An event (t,e) states that event action e occurred at time t.
An event action represents the action associated with the event.
For example, injection of antibiotics (procedure) and transfer
to ICU (transfer) are event actions. Time is represented in
days, where t = 1 means the first day of that patient’s visit.
Thus (1, in jection o f antibiotic) is an event indicating that a
patient received an injection of antibiotics on the first day of
his or her visit.

We view a visit as entirely consisting of events. Admission
data can be converted to events if we assign them to time
t = 0 and convert them to event actions such as @Age = 10,
@Diag = 135 (diagnosis is CCS code 135), @Severity =
Ma jor, etc. We use the @ symbol for admission data.
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(a) From temporal data to its static equivalent. (b) The ensemble approach to class imbalance. (c) First pass of feature selection.

Figure 4: Overview of our approach: (a) feature engineering, (b) the ensemble approach to class imbalance, and (c) first pass of
feature selection.

Definition 2. We define the partial visit of visit V at time t
as V (t) = {(t ′,e) ∈V : t ′ ≤ t}, i.e., of events until day t.

Example 2. Partial visits from Vex include Vex(0) = /0, Vex(1) =
{(1,A),(1,B)} and Vex(2) = {(1,A),(1,B),(2,A)}. Note that,
Vex(t) =Vex for any t ≥ 3.

We need the notion of a partial visit because we want to be
able to predict the risk of acquiring CDI at any point during
a patient’s visit.

Definition 3. We define the bare events description of [partial]
visit V as BE(V ) = {e : ∃t, (e, t) ∈ V}, i.e., as the set of the
event actions in the events of V .

Example 3. For the whole visit Vex, BE(Vex) = {A,B,C,D}.
For partial visit Vex(2), BE(Vex(2)) = {A,B}.

The bare events description, or just bare events, represents
the basic representation of visits in previous research [3, 4, 7].
Feature received laxatives in Dubberke et al is an example of
this [3]. Our proposal, however, consists in combining event
actions in temporal order for representing visits.

Definition 4. We define the ordered pairs of events description
of [partial] visit V as PE(V ) = {(e1,e2) : ∃t1, t2, t1 ≤ t2 ∧
(e1, t1) ∈V ∧ (e2, t2) ∈V ∧ e1 ∕= e2}.
Example 4. For the whole visit Vex, PE(Vex) =
{(A,B),(A,C),(A,D),(B,A),(B,C),(B,D),(C,D),(D,C)}.
For partial visit Vex(2), PE(Vex(2)) = {(A,B),(B,A)}.

The ordered pairs of events description, or just pairs of
events, couples event actions of events that succeed each other
temporally or occur during the same day. Note that a pair
of events is a simpler version of a partial order [11, 12].
Also note that this interpretation changes with admission data;
in pair (e1,e2), if e1 and e2 represent admission data, then
the pair represents an AND operation over admission data.
For example, pair (@Age = 60,@Diag = 135) means that the
patient is 60−69 years of age AND was admitted with intestinal
infection (@Diag = 135). If only e1 represents admission
data, then the pair represents event action e2 occurring in
a visit with admission data including e1. For example, pair
(@Age = 60,To = OR) means that a patient of age 60− 69
was transferred to the operating room (OR).

We now proceed to describe the role of hierarchies in our
methodology.

Definition 5. The relation ≺ stands for the hierarchy relation
(e≺ e′ means e is more specific than e′) and ≺★ is the transitive
closure of ≺.
Example 5. As Fig. 1 shows, we have that Cephalosporins≺
antibiotics but Cephalosporins ≺★ anti-in f ectives as well as
Cephalosporins≺★ antibiotics.

To allow our classifier to make use of these hierarchies,
we let the classifier decide on the level of granularity it needs
to describe the data. For example, if all antibiotics increased
the risk of CDI equally, the classifier could then assign the
risk to the antibiotics category rather than to each individual
antibiotic. The idea is to let the classifier decide on a small
number of features (via feature selection) and make use of the
aggregating power embedded in the hierarchies. Hence, we
introduce redundant event actions in the visits, as we describe
below.

Remark 1. Let event action e belong in category e′, i.e., e≺★ e′.
Then, e′ is an event action and, for every pair (t,e) ∈V , also
(t,e′) ∈V , for all visits V .

Definition 6. We define the hierarchically aware pairs of
events description of visit V as PEH(V ) = PE(V )−{(e,e′) :
e≺★ e′ ∨ e′ ≺★ e}.
Example 6. Let us suppose that C ≺ D. Then, we have that
PEH(Vex) = {(A,B),(A,C),(A,D),(B,A),(B,C),(B,D)}.

The definition of PEH removes redundant information from
PE. If event actions e and e′ are related through a hierarchy,
then we are not interested in knowing that e′ generalizes e;
this is not visit specific information, and therefore it does not
help in classification.

For each visit (or partial visit), the application of functions
like BE and PEH defines a sparse description of the instance.
For a data set, such descriptions induce the more standard
tabular or matricial description of the data, necessary for
classification with linear models.

Definition 7. Let D be a set of descriptions (either bare events
or ordered pairs of events). We say that vector H = (h1, ...,hm)
is a header of D if:
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1) The dimension of H is m = ∣∪E∈D E∣.
2) Each component hi ∈ ∪E∈DE, for i ∈ {1, ...,m}.
3) The components are not repeated, i.e., hi ∕= h j for all

i ∕= j, i, j ∈ {1, ...,m}.

The header of a set of [partial] visit descriptions introduces
a strict total order on the features that are used to describe
the visits. In practice, we arrange the features alphabetically.
Having defined the header, we now introduce the tabular
description of a set of [partial] visits.

Definition 8. For [partial] visit description D and header H ,
the vectorial description vH (D) is a binary ∣H ∣-dimensional
vector such that, for all i ∈ {1, ..., ∣H ∣},

V H
i (D) =

{
1, if hi ∈ D,

0, otherwise.

Definition 9. Let F be a function that takes a [partial] visit
and returns a bare events or ordered pairs of events description,
i.e., F ∈ {BE,PEH ,BE ∪PEH}, and let T be a set of tuples
such that for every (V,c) ∈ T , V is a [partial] visit and c is a
class label. Then, the tabular description of T induced by F
is defined as the pair (H ,E), such that:

1) H is a header for the set {F(V ) : (V,c) ∈ D}.
2) E is a set of tuples {(vH (V ),c) : (V,c) ∈ D}.

Using F ∈ {BE,PEH ,BE ∪PEH} induce different tabular
descriptions of a data set of visits. Classification is done on
these tabular descriptions; for a tabular description (H ,E),
we construct the data matrix for the linear problem by using
vectors e ∈ E as its rows. In practice, however, we take
advantage of the sparse description of visits by using sparse
matrices in our code.

C. Additional features

In addition to the admission information and clinical events
that naturally describe a visit, we hand-crafted a small number
of additional features that are known be risk factors for CDI.
We introduced features describing whether the patient was
readmitted once or twice in the last 60 and 90 days, whether the
patient had CDI within one year of admission, the diagnoses
from the previous admission (if any), and the CDI testing
method in place. We also computed the CDI Colonization
Pressure [3, 5–7], which measures how many patients who
had CDI stayed in the same unit as the patient. We use
the daily version of the colonization pressure, describing it
as event actions Pressure=LOW, Pressure=MODERATE, and
Pressure=HIGH, and their generalization, Pressure. A pressure
of zero means no event is introduced.

D. Dimensionality growth

The introduction of pairs of events drastically increases
the feature space from around 3,000 bare events to around
300,000 pairs of events. Such high dimensionality threatens the
purpose of yielding a human-interpretable prediction model,
which would benefit from few but relevant features. Moreover,
such high dimensionality threatens classification, especially
considering that the minority class consists of just 950 visits
(out of 200,000), and also because of the increased compu-
tational complexity of the classification algorithm, because

of the enlargement of the data set. For these reasons, we
split the training set into smaller chunks, feed them to an
ensemble classifier, and perform extensive feature selection.
The methodology is presented in the next section.

V. CLASSIFICATION

A. Addressing class imbalance through ensembles

Our approach to classification consists of building an
ensemble of logistic regression classifiers to estimate risk.
Using ensembles allows us to reduce training on a large data
set to training on several smaller data sets, as well as address
class imbalance by constructing subsets of the data that are
balanced, as done by Lim et al [17]. As shown in Fig. 4b,
we train the classifiers on subsets of the data that contain the
whole minority class and a random subset of the majority class,
so that both classes are balanced. This results in a collection
of classifiers that are agnostic to class imbalance, a property
inherited by the ensemble. We do not need to oversample the
minority class, introduce perturbations, etc., as is often done
in other research [34].

Formally, if n is the number of visits in the minority (CDI)
class (n = 950), we pick n random visits from the majority
class. Then, for each visit, we pick R days sampled at random
(R= 3) and represent them using the methodology described in
Section IV-B, producing training sets of nR instances for each
class. Each training set will be used by one logistic regression
classifier. For the CDI class, we do not sample days later than
3 days before CDI was detected. (The guidelines recommend
testing patients that have had diarrhea or other symptoms of
CDI for at least 3 days.)

B. Feature selection

Our objective is to reduce the number of features to a
reasonably low number, to facilitate interpretability of the
model. Some researchers address high dimensionality through
ensembles, by randomly selecting features in the classifiers
[35–40]. Instead, we perform feature selection inside each
classifier. This produces an ensemble classifier that considers
substantially fewer features, aimed to facilitate interpretabil-
ity. Dimensionality reduction approaches, such as Johnson-
Lindenstrauss and PCA, do not necessarily result in using
few features (one dimension might span too many features)
and non experts in dimensionality reduction often interpret the
produced dimensions incorrectly [41].

We filter features in two stages. In the first stage, we pass
over the feature space, quickly discarding the least relevant
features. We do so by using Algorithm 1, which processes a
tabular description of the data (Def. 9) and returns the m “most
likely” predictive features, with m = 10001.

In the second stage, we use L1-regularization to further re-
duce the number of features. The L1-regularized cost function
for fitting logistic regression is

L(α,β;λ) = λ∣β∣1+ ∑
(x,y)∈S

ln
(
1+ exp(−y(α+βT x))

)
, (1)

1Passing too much data to a classifier can worsen its runtime and memory
consumption. A value of m that is too large can make classification infeasible.
Smaller values of m can increase the overall speed of classification at the
expense of model quality (compensated with a larger ensemble). A value m
that is too small can lead to ignoring potentially relevant features.
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Algorithm 1 Greedy randomized embedded feature filter
Input: m: bucket size, H : features, S : rows of the data set
1: Randomly partition H into sets B1, ...,Bk, so that ∣Bi∣ = m for

every i such that 1≤ i≤ k−1.
2: Let C = B1.
3: for i = 2 to k do
4: Fit logistic regression model to S projected on C∪Bi
5: For h ∈ C ∪ Bi, define s(h) as the number of classification

errors introduced when βh is set to 0 (βh is the coefficient of
the logistic regression model for feature h).

6: Update C to be the m features in C∪Bi with the highest s(h).
7: end for
8: return C

where α and β describe the logistic regression model, λ is
the penalty on ∣β∣1, S is the set of instances of the tabular
description of the data (Def. 9), and in (x,y) ∈ S, x is the
instance vector and y ∈ {−1,+1} is the class. (When λ = 0,
we have traditional logistic regression.) Ideally, λ is chosen
through cross validation. Since this can be expensive, we
follow Fan and Tal [18], choosing λ by minimizing the
Bayesian Information Criterion (BIC) of L, which applied to
our problem is

BIC =−2L+(1+ ∣β∣0) ln ∣S∣. (2)

Using L1-regularization for feature selection has theoretical
backing. The L0 − L1 equivalence [42] result states that, in
sparse data, L1-regularization can effectively approximate the
ideal L0-regularization, a notorious NP-hard problem, in poly-
nomial time. However, using BIC instead of cross validation
should reduce the quality of the approximation slightly.

We use L1-regularization to approximate L0-regularization,
with the intention of making each classifier in the ensemble as
small as possible. Since we create an ensemble, the number
of selected features is bound to increase in any case, and,
therefore, we could consider using L2-regularization or LASSO
over L1-regularization (see the work of Vidaurre et al [43] for
L1 and other regularization schemes). However, using less strict
regularization may increase the number of features without
improving prediction quality (Table VI supports this point).

C. Estimation

We predict CDI by converting each visit into a feature
description (Def. 9), and supplying this description to each
logistic regression model in the ensemble. Then, the ensemble
counts the number of times CDI is predicted; if above 50%, the
ensemble predicts CDI. This approach gives the same results
as averaging the probabilities produced by the models.

VI. EXPERIMENTS

A. Experiments outline

Our first experiment compares our methodology to the state
of the art: the work of Wiens et al [7]. The experimental setting
lies between their setting and ours, in that we predict using
1-2 days worth of data only, but we perform 10-fold cross
validation rather than using one year to predict the next. The
second experiment further compares bare events and pairs of
events, and shows that the classifiers generate evolving risk
curves. The third experiment compares using only information

PEC BEC SAC
Pairs of events (PEH)

√
Bare events (BE)

√ √ √
Ensemble of logistic regression

√ √
Feature selection

√ √
Compensation for class imbalance

√ √

Table III: Characteristics of the three classifiers.

known at admission time versus using only clinical events. Us-
ing only information known at admission time produces fairly
predictive results, while using only clinical events produces
less predictive results.

The general settings for our classifiers consist of ensembles
of 30 logistic models each, sampling each visit into three
partial visits (randomly), and filtering 1000 features in stage
1 of feature selection. For each classifier, we report its area
under the curve (AUC), which we use as the main parameter
for comparison. We also report the sensitivity (true positive
rate) and specificity (true negative rate) for completeness.
Additionally, we report the number of active features (the ones
included in the classifier, i.e., with βi ∕= 0) and the inactive
features (with βi = 0). A feature is inactive if discarded through
feature selection or deemed irrelevant during regression.

B. Improvement over baseline

In the first experiment, we compare three classifiers: the
pairs of events classifier (PEC), the bare events classifier
(BEC), and the state of the art classifier (SAC). PEC consists
of the methodology presented in this paper, with features
produced by both BE and PEH . BEC is identical to PEC,
except that features are only described through BE. SAC
is an adaptation of the work of Wiens et al [7]. Table III
summarizes the characteristics of PEC, BEC, and SAC. We
compare the classifiers using 10-fold cross validation and data
limited to 1 or 2 days after admission, for fair comparison
against Wiens et al. Note that SAC does not fully follow
their research. They used L2-regularized logistic regression
to predict cases of CDI using data known at admission time
(e.g., demographics, initial diagnoses) as well as clinical events
(e.g., procedures, prescriptions) and laboratory values (e.g.,
blood pressure, temperature) until 24 hours after admission.
We cannot use such data, because we do not have laboratory
values and our discrete notion of time does not permit us to
cut visits exactly 24 hours after admission. We compensate
for the later by considering visits up to day 1 or 2. Wiens
et al also used data from one year to predict the next, which
overcomes the problem of changes in the testing of CDI. Since
we introduce a feature indicating the CDI testing method being
used at the time of admission, we do not consider it necessary
to train on one year to predict the next, thus training SAC
identically to PEC and BEC.

Table IV summarizes general statistics of the different
classifiers in the task of predicting whether patients will
develop CDI using data known at 1 or 2 days after admission.
The best performing classifier was PEC, followed closely by
BEC. A more detailed visual description of the performance
of the classifiers in this task is shown in the ROC curves of
Fig. 6a. Note that the AUC of SAC is similar to the one shown
in Wiens et al [7]. The low sensitivity and high specificity
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Classifier AUC Sensitivity Specificity Active fs Inactive fs
SAC 80.57% 17.19% 99.32% 1999.0 713.2
BEC 83.94% 76.32% 76.06% 461.7 2250.5
PEC 85.19% 78.04% 75.86% 3263.4 150740.8

Table IV: Performance predicting CDI cases using data known
at 1 or 2 days after admission. For each classifier, we report
its AUC, sensitivity, specificity, and number of active and
inactive features. The values are averaged over the 10-fold
cross validation tests.

Classifier AUC Sensitivity Specificity Active fs Inactive fs
Any day
BEC 85.26% 78.04% 76.44% 539.8 2201.2
PEC 86.61% 82.21% 74.82% 3729.7 262222.0

Later days
BEC 85.21% 77.12% 76.76% 576.4 2135.8
PEC 86.53% 82.25% 74.26% 4132.1 269594.2

Table V: Performance predicting CDI at any day of a patient’s
visit. For each classifier, we report its AUC, sensitivity, speci-
ficity, and number of active and inactive features. The values
are averaged over the 10-fold cross validation tests.

of SAC come from the fact that class imbalance was not
addressed. With respect to the number of active features, BEC
considered much fewer features than SAC, which is consistent
with the use of feature selection. Furthermore, BEC performed
better than SAC. On the other hand, PEC considered more
features than BEC, but taken from a much larger pool of more
than 150,000 features.

C. Up-to-date risk estimation

In this experiment, we compare PEC and BEC for the task
of predicting whether the patient will develop CDI during
a visit. We consider two alternative training sets: any day
and later days. The any day training set consists of patient
visits cut off at days sampled uniformly at random. The later
days training set cuts patients’ visits with linearly increasing
probability, making later days more likely to be sampled than
earlier days. The idea behind later days is that interesting
[pairs of] events might occur later during the visit. For both
training sets, the CDI class can be sampled until 3 days before
diagnosis. The non-CDI class can be sampled until the very
end of the visit under any day, but only up to until 2 weeks
under later days, to reduce the effect of extremely long visits
(months, years) on classification. (As Table I shows, most visits
last only a few days.)

Table V shows the performance of PEC and BEC when
trained under the any day and later days data sets. The BEC
classifiers lag slightly behind the PEC classifiers under both
training sets, but their difference in AUC is small. Fig. 6b
shows that the PEC classifiers perform nearly identically, while
the BEC classifiers lag closely behind. The effect of the
training set appears irrelevant. Note that the AUCs of PEC
and BEC in this experiment are similar to the previous one
(Table IV). This hints that data on admission and early events
may be good predictors of the outcome of the patient.

A side-result of the classifiers trained is that they are more
likely to predict CDI when the onset of symptoms approaches.

Figure 5: BEC and PEC classifiers as the time to CDI
approaches. The bars represent the sensitivity of the classifiers
from 7 days to the day before the onset of symptoms.

AUC Active features
Classifier With Without With Without
1-2 days
BEC 85.07% 84.10% 461.7 1567.2
PEC 86.20% 83.97% 3263.4 5143.6

Any day
BEC 85.26% 84.25% 539.8 1629.6
PEC 86.61% 84.49% 3729.7 5191.8

Later days
BEC 85.21% 84.10% 576.4 1630.8
PEC 86.53% 84.34% 4132.1 5264.8

Table VI: Impact of L1-regularization with BIC minimization
on the classifiers. For each classifier, the AUC on the any
day, later days and 1-2 days testing sets are presented, as
well as the number of features, for the cases with and without
regularization. The values are averaged over the 10 fold cross
validation tests.

Fig. 5 shows the sensitivity of the PEC and BEC classifiers as
the onset of CDI approaches. The classifiers were trained on
any day and later days, as well as in 1-2 days, which represents
the setting from the previous experiment. As expected, training
on admission and early events only (BEC and PEC on 1-
2 days) does not produce risk curves. Training on any day
and later days produces risk curves, without much difference
between them; PEC outperforms BEC for this task.

Table VI shows that BIC minimization contributed slightly
to improve out-of-sample performance while noticeably reduc-
ing the number of active features in the ensembles. The use of
BIC minimization signified a reduction in at least 19.6% of the
features. The average in-sample accuracy of each regression
model in the BEC classifiers is 83.2%. For PEC regression
models, accuracy is 93% on average. This suggests that the
ensembles help compensate for underfit and overfit regression
models.

D. Admission data versus clinical events

As using only data available prior to day 2 seem to suffice
for predicting whether the patient will develop CDI during
the visit, we considered the question of prediction accuracy
using either admission data or clinical events data. In this
experiment, we compare PEC and BEC when trained on
either admission data only or clinical events only. Table VII
shows the performance of BEC and PEC classifiers trained
using either admission data or clinical events while Fig. 6c
compares their ROC. Classifiers using admission data clearly
outperform classifiers using clinical events, which confirms
that information available at admission time can indeed be

146146



Classifier AUC Sensitivity Specificity Active fs Inactive fs
Admission data
BEC 82.02% 72.63% 77.07% 73.6 1696.3
PEC 83.13% 68.00% 80.54% 280.0 58331.4

Clinical events data
BEC 77.58% 64.34% 75.43% 272.2 485.0
PEC 78.83% 69.62% 72.11% 3180.0 117536.3

Table VII: Performance predicting CDI using either admission
data or clinical events data. For each classifier, we report
its AUC, sensitivity, specificity, and number of active and
inactive features. The values are averaged over the 10-fold
cross validation tests.

used to predict whether a patient will develop CDI during the
visit.

E. Features selected in PEC

In the PEC, any day classifier, the most influential features
are dominated by bare events and admission data. To us, the
influence of a feature is its absolute log-odds ratio, i.e., ∣βi∣ for
feature i. Table VIII shows the 20 most influential features in
the classifier. Features of the form [x < y] represent pairs of
events. Most of the features in Table VIII involve bare events
and/or admission data, which explains the previous results,
showing that using admission data alone could lead to good
prediction. If we extend the analysis to the 100 most influential
features, we see a similar picture. 36 features correspond
to bare events, with 33 being about admission data, while
64 features correspond to pairs of events, with 62 involving
admission data. Moreover, 59 pairs of events are strictly about
admission data, i.e., they do not involve clinical events. The 5
features that do not involve admission data are: [To=PORR <
To=OR], which states that visiting the PORR (post-OR) before
the OR (operating room) reduces the risk of CDI; Proc=231,
which states that undergoing another therapeutic or diagnos-
tic procedure increases risk; [To=OR < Proc=Diag/Therap],
which states that visiting the OR to undergo any diagnostic or
therapeutic procedure increases risk; Proc=223, which states
that enteral or parenteral nutrition increases risk; and To=4JPW,
which states that visiting a specific unit (4JPW) decreases
risk. To be noted, these features cannot just be interpreted
in isolation; they co-occur with many events, because medical
events are associated with the patient’s condition. This explains
the two most influential pairs that partially involve admis-
sion data: [@AdmType=NEWBORN < Proc=Cardiovasc] and
[@SvcCat=PEDIATRICS < Proc=Cardiovasc]. Both state
that either a newborn or a child that undergoes a cardiovascular
procedure is more likely to develop CDI.

Extending to the top 1000, which make up for the dom-
inating features of the classifier, we see that only 154 do
not involve admission data, 134 are pairs of events. Of these
pairs, prescriptions occur in 108 (54 are exclusively pairs of
prescriptions), procedures occur in 72, and transfers are the
least frequent, occurring in 12 pairs.

Diagnoses participate in 50 features of the top 100 and
in 578 of the top 1000. The most influential diagnoses,
several present in Table VIII, include intestinal infection
(@Diag=135), osteoarthritis (203), pancreatic disorders ex-
cept diabetes (152), nutritional deficiencies (52), abdominal

Feature name Log odds (βi)
@Diag=135 5.2718
@Severity=Major 2.7682
@Severity=Extreme 2.4677
@Severity=Moderate 1.8935
@AdmSrc=NEWBORN PREMATURE BIRTH 1.7402
[@Severity=Minor < @AdmType=ELECTIVE/ROUTINE] 1.4477
@SvcCat=INTERNAL MEDICINE 1.1968
@Diag=203 -1.1257
@AGE=20 -1.1054
[To=PORR < To=OR] -1.0547
@PCR_period -0.9199
[@PCR_period < @Diag=152] 0.8856
[@SvcCat=INTERNAL MEDICINE < @AdmType=ELECTIVE/ROUTINE]0.8567
@SvcCat=FAMILY MEDICINE -0.8476
[@SvcCat=PSYCHIATRY < @AdmType=EMERGENCY] -0.8273
@AGE=30 -0.7447
[@AdmType=URGENT < @AGE=20] -0.7261
@AdmSrc=UIHC CLINIC -0.7136
@Diag=52 0.6986
@Readm_90D 0.6706

Table VIII: Top 20 most influential features in PEC, any day.

hernia (143), and other lower respiratory disease (133).

F. Role of time

For the most part, temporal ordering played a small, but
significant role in classification as evidenced by the fact that
PEC performed consistently better than BEC.

Table IX shows the top pairs of events where order matters
the most, i.e., those with the highest difference β[x<y]−β[y<x].
Observe that the log-odds in some of them even change signs.
Some of these orders are consistent with the literature of
risk factors of CDI; for example, that receiving antibiotics
after some other event signaling exposure (e.g., repiratory
intubation) increases the risk of CDI. In other cases, pairs
of events can be seen as markers of the progression of the
infection, as in the case when parenteral nutrition was needed
([Proc=223 < Proc=231]) and when nutritional agents were
given before medication for vertigo-nausea ([RxMaj=40 <
RxSmin=562210]).

Antibiotics were present in several of the pairs shown in Ta-
ble IX. Overall, pairs of events involving systemic antibiotics
represent 6.16% of all the features, almost always participating
in pairs of events rather than bare events. Most of the time,
the whole category of antibiotics is mentioned. Otherwise,
first and fourth generation Cephalosporins, Penicillins and
Aminopenicillins are the antibiotics mentioned. Antibiotics
seem to increase risk when the patient has received metabolic
agents, and when receiving anticoagulants and anticonvulsants.
The last two seem to suggest that such patients underwent
severe dehydration and nausea, which are common symptoms
of CDI. Systemic antifungals seem to also increase the risk of
CDI.

G. C.difficile exposure

In much of the literature, it has been argued that c.diff
is highly contagious. Hence, one might expect features in
our classification to demonstrate this. For example, one might
expect to see pairs of events of the type "high colonization
pressure, then exposed to antibiotics" would increase the risk
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(a) Prediction using 1 or 2 days of a visit. (b) Prediction at any day of a visit. (c) Prediction using admission data only (admit)
or clinical events only (events).

Figure 6: ROC curves of the classifiers in the task of predicting CDI, using different aspects of the data. The ROC curves are
averaged over the 10-fold cross validation tests. The Random curve stands for the uninformed classifier.

Pair of events Readable version β[x<y] β[y<x]
[To=OR < To=PORR] transferred to OR, then transferred to PORR -0.1831 -1.0547
[To=OR < Proc=Diag/Therap] transferred to OR, then underwent miscellaneous diagnostic-therapeutic procedure 0.3556 -0.0004
[Proc=223 < Proc=231] underwent ’enteral and parenteral nutrition’, then underwent ’other therapeutic 0.1982 -0.0019

procedures’
[Proc=231 < RxMin=812] underwent ’other therapeutic procedures’, then prescribed ’antibiotics systemic’ -0.0140 -0.2062
[Proc=Diag/Therap < RxSmin=81206] underwent miscellaneous diagnostic-therapeutic procedure, then prescribed ’fourth 0.1781 0.0144

generation cephalosporins’
[RxMaj=40 < RxSmin=562210] prescribed ’nutrients/nutritional agents’, then prescribed ’5ht3 receptor antagonists’ 0.1362 0.0079
[Proc=216 < RxSmin=81219] underwent ’respiratory intubation and mechanical ventilation’, then prescribed 0.0042 -0.1182

’extended-spectrum penicillins’
[To=6RCE < Proc=Diag/Therap] transferred to 6RCE, then underwent miscellaneous diagnostic-therapeutic procedure -0.0055 -0.1120
[RxSmin=280892 < RxSmin=81203] prescribed ’misc analgesics systemic’, then prescribed ’first generation cephalosporins’ 0.1132 0.0096
[Proc=177 < RxSmin=280808] underwent ’computerized axial tomography (ct) scan head’, then prescribed ’opiate -0.0161 -0.1191

agonists’

Table IX: Top 10 pairs of events where the order is relevant. For each pair of events, we include a human readable description
of it as well as the log-odds of the original order β[x<y] and the converse order β[y<x].

of developing CDI. But this was not the case. In fact, the
Pressure events were, for the most part, ignored by our clas-
sifiers. Furthermore, the good performance of the classifiers
on only 1-2 days worth of visit data seems to downplay the
role of exposure in the development of CDI. This may suggest
that c.diff exposure plays a lesser role in CDI, as suggested in
recent research [25, 26].

However, we need to emphasize the limitations of using
our classifier’s output to estimate the "importance" of features.
Our classifier aims to produce a simple, minimally redundant
explanation of risk, e.g., if two features have a similar ex-
planatory power, the classifier will choose only one. Since
clinical management of the patient is highly dependent on the
patient’s condition, we can easily explain many procedures,
medications, and locations associated with a patient-visit just
by knowing the patient’s admission information. Moreover,
many procedures are associated with particular locations in
the hospital, because of the medical speciality associated.
Thus, it is likely that pressure-related features (that have an
important spatial component) were subsumed by other features
that collectively provided a minimally redundant explanation.

VII. CONCLUSION

We addressed the problem of predicting CDI using tem-
poral information from medical records. We described the
temporal information (events) that occurred during a patient’s
visit as ordered pairs of events (pairs of events). A pair of

events (x,y) or [x < y] states that event x took place the day
before or the same day as event y. We crafted an ensemble
of logistic regression models, where each classifier of the
ensemble was trained on a balanced subset of the data and
performed extensive feature selection, addressing the problems
of class imbalance and high dimensionality, respectively. Our
methodology slightly outperforms baseline classifiers in the
task of predicting CDI. However, our most salient contribution
is that of a classifier that produces interpretable information
which could later inform medical decision making.

Our work is subject to several limitations. First, by de-
scribing visits as ordered pairs of events, we are missing
the opportunity of learning what happens when orders are
longer, e.g., with ordered triples of events. Second, we have not
introduced a methodology for recommending the parameters
of the classifier (ensemble size, visit resamples, bucket size
in feature selection, etc.). Third, even though the models
produced by our methodology are readable, the narrative they
produce is simple but incomplete. Groups of co-occurring
clinical events are likely to be ignored, except for one or
two. This implies that meaningful associations can be hidden.
For example, causal relation a → b could be descrided by
pair (c,d) if c co-occurs with a and d co-occurs with b,
even though c and d are causally unrelated. Furthermore, even
though the ensembles reduce the number of features to use,
the least predictive features are less likely to be consistently
chosen among logistic regression models, hence increasing the
total number of features chosen in the ensemble, which is
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detrimental to classification. These limitations, especially the
last one, are the subject of future work.

Despite our limitations, we describe how novel approaches
to using existing medical records can help anticipate an
important healthcare-associated infection. However, our ap-
proach may also have applications for other hospital-associated
infections and adverse events, which together contribute to
significant hospital-associated morbidity and mortality.

Acknowledgements: This work was funded in part by the
University of Iowa’s eHealth and eNovation Center.

REFERENCES

[1] F. Lessa, Y. Mu, W. Bamberg et al., “Burden of clostridium difficile
infection in the united states,” New England Journal of Medicine, vol.
372, no. 9, pp. 825–834, 2015.

[2] Centers for Disease Control and Prevention (CDC), “Vital signs: pre-
venting clostridium difficile infections,” MMWR Morbidity and Mortality
Weekly Report, vol. 61, no. 9, pp. 157–62, 2012.

[3] E. Dubberke, Y. Yan, K. Reske et al., “Development and validation of a
clostridium difficile infection risk prediction model,” Infection Control
and Hospital Epidemiology, vol. 32, no. 4, pp. 360–6, 2011.

[4] K. Garey, T. Dao-Tran, Z. Jiang et al., “A clinical risk index for
clostridium difficile infection in hospitalised patients receiving broad-
spectrum antibiotics,” Journal of Hospital Infection, vol. 70, no. 2, pp.
142–7, 2008.

[5] J. Wiens, J. Guttag, and E. Horvitz, “Learning evolving patient risk
processes for c. diff colonization,” Machine Learning for Clinical Data
Analysis. ICML 2012.

[6] ——, “Patient risk stratification for hospital-associated c. diff as a time-
series classification task,” NIPS 2012.

[7] J. Wiens, W. Campbell, E. Franklin et al., “Learning data-driven patient
risk stratification models for clostridium difficile,” Open Forum Infec-
tious Diseases Advance Access, June 2014.

[8] S. Fujitani, W. George, and A. Murthy, “Comparison of clinical severity
score indices for clostridium difficile infection,” Infection Control and
Hospital Epidemiology, vol. 32, no. 3, pp. 220–8, 2011.

[9] P. Jensen, L. Jensen, and S. Brunak, “Mining electronic health records:
towards better research applications and clinical care,” Nature Genetics,
vol. 13, pp. 395–405, 2012.

[10] C. Paxton, A. Niculescu-Mizil, and S. Saria, “Developing predictive
models using electronic medical records: Challenges and pitfalls,” AMIA
2013.

[11] D. Patnaik, P. Butler, N. Ramakrishan et al., “Experiences with mining
temporal event sequences from electronic medical records: Initial suc-
cesses and some challenges,” in Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’11, 2011, pp. 360–368.

[12] D. Patnaik, N. Ramakrishnan, L. Parida et al., “Mining significant partial
order patterns in electronic medical records (poster),” AMIA 2011.

[13] N. Sundaravaradan, N. Ramakrishnan, and D. Hanauer, “Factorizing
event sequences,” IEEE Computer, vol. 45, no. 12, pp. 73–75, 2012.

[14] N. Lee, A. Laine, H. Hu et al., “Mining electronic medical records
to explore the linkage between healthcare resource utilization and
disease severity in diabetic patients,” in 2011 First IEEE International
Conference on Healthcare Informatics, Imaging and Systems Biology
(HISB), 2011.

[15] J. Li, A. Fu, H. He et al., “Mining risk patterns in medical data,” KDD
2005.

[16] R. Henriques, S. Pina, and C. Antunes, “Temporal mining of integrated
healthcare data: Methods, revealings and implications,” 2013.

[17] N. Lim, H. Ahn, H. Moon, and J. Chen, “Classification of high-
dimensional data with ensemble of logistic regression models,” Journal
of Biopharmaceutical Statistics, vol. 20, no. 1, pp. 160–71, 2010.

[18] Y. Fan and C. Tang, “Tuning parameter selection in high dimensional
penalized likelihood,” Journal of the Royal Statistical Society, series B,
vol. 76, no. 3, pp. 531–552, 2012.

[19] AHRQ Effective Health Care Program, Treating and Preventing C-diff
Infections: A Review of the Research for Adults and Their Caregivers.

[20] T. Henrich, D. Krakower, A. Bitton, and D. Yokoe, “Clinical risk factors
for severe clostridium difficile-associated disease,” Emerging Infectious
Diseases, vol. 15, no. 3, pp. 415–22, 2009.

[21] J. Fashner, M. Garcia, L. Ribble, and K. Crowell, “Clinical inquiry:
what risk factors contribute to c difficile diarrhea?” Journal of Family
Practice, vol. 60, no. 9, pp. 545–7, 2011.

[22] R. Jump, M. Pultz, and C. Donskey, “Vegetative clostridium diffi-
cile survives in room air on moist surfaces and in gastric contents
with reduced acidity: a potential mechanism to explain the association
between proton pump inhibitors and c difficile-associated diarrhea?”
Antimicrobial Agents and Chemotherapy, vol. 51, no. 8, pp. 2883–7,
2007.

[23] M. Hamel, D. Zoutman, and C. O’Callaghan, “Exposure to hospital
roommates as a risk factor for health care-associated infection,” Ameri-
can Journal of Infection Control, vol. 38, no. 3, pp. 173–81, 2010.

[24] M. Shaughnessy, R. Micielli, D. DePestel et al., “Evaluation of hospital
room assignment and acquisition of clostridium difficile infection,”
Infection Control and Hospital Epidemiology, vol. 32, no. 03, pp. 201–
206, 2011.

[25] A. Walker, D. Eyre, D. Wyllie et al., “Characterisation of clostridium dif-
ficile hospital ward-based transmission using extensive epidemiological
data and molecular typing,” PLoS Medicine, vol. 9, no. 2, p. e1001172,
2012.

[26] D. Eyre, M. Cule, D. Wilson et al., “Diverse sources of c.difficile
infection identified on whole-genome sequencing,” New England Journal
of Medicine, vol. 369, no. 13, pp. 1195–205, 2013.

[27] A. Elixhauser, C. Steiner, and L. Palmer, “Clinical classifications soft-
ware (ccs), 2014,” U.S. Agency for Healthcare Research and Quality.

[28] M. Siemann, M. Koch-Dörfler, and G. Rabenhorst, “Clostridium difficile-
associated diseases: The clinical courses of 18 fatal cases,” Intensive
Care Medicine, vol. 26, no. 4, pp. 416–21, 2000.

[29] NHS Choices (UK), “Complications of clostridium difficile infection.”
[30] I. Batal, H. Valizadegan, G. Cooper, and M. Hauskrecht, “A pattern

mining approach for classifying multivariate temporal data,” IEEE BIBM
2011.

[31] ——, “A temporal pattern mining approach for classifying electronic
health record data,” ACM TIST 2012.

[32] R. Moskovitch, C. Walsh, G. Hripcsak, and N. Tatonetti, “Prediction of
biomedical events via time intervals mining,” BigCHat Workshop, KDD
2014.

[33] R. Moskovitch and Y. Shahar, “Medical temporal-knowledge discovery
via temporal abstraction,” in AMIA annual symposium proceedings, vol.
2009, 2009, p. 452.

[34] H. He and E. Garcia, “Learning from imbalanced data,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–
1284, 2009.

[35] A. Brahim and M. Limam, “Robust ensemble feature selection for high
dimensional data sets,” HPCS 2013.

[36] K. Hwang, I. Lee, J. Park et al., “Reducing false-positive incidental
findings with ensemble genotyping and logistic regression based variant
filtering methods,” Human Mutation, vol. 35, no. 8, pp. 936–944, 2014.

[37] J. Shankar, S. Szpakowski, N. Solis et al., “A systematic evaluation of
high-dimensional, ensemble-based regression for exploring large model
spaces in microbiome analyses,” BMC Bioinformatics, vol. 16, no. 31,
2015.

[38] S. Wang, X. Chen, J. Huang, and S. Feng, “Scalable subspace logistic
regression models for high dimensional data,” APWeb 2012, LNCS 7235,
pp. 685-694, 2012.

[39] P. Yang, W. Liu, B. Zhou et al., “Ensemble-based wrapper methods
for feature selection and class imbalance learning,” in Advances in
Knowledge Discovery and Data Mining. Springer, 2013, pp. 544–555.

[40] R. Zakharov and P. Dupont, “Ensemble logistic regression for feature
selection,” in Pattern Recognition in Bioinformatics. Springer, 2011,
pp. 133–144.

[41] J. M. Lewis, L. Van Der Maaten, and V. R. de Sa, “A behavioral
investigation of dimensionality reduction,” in Proceedings of the 34th
Annual Conference of the Cognitive Science Society, 2012, pp. 671–676.

[42] D. Lin, D. Foster, and L. Ungar, “A risk ratio comparison of l0 and l1
penalized regressions,” University of Pennsylvania, techical report, 2010.

[43] D. Vidaurre, C. Bielza, and P. Larranaga, “A survey of l1 regression,”
International Statistical Review, vol. 81, no. 3, pp. 361–387, 2013.

149149


