
Interactions in an Intensive Care Unit: Experiences

Pre-Processing Sensor Network Data

Mauricio Monsalve

Department of Computer

Science

The University of Iowa

Iowa City, IA 52242

mauricio-monsalve

@uiowa.edu

Sriram Pemmaraju

Department of Computer

Science

The University of Iowa

Iowa City, IA 52242

sriram-pemmaraju

@uiowa.edu

Philip M. Polgreen

Department of Internal

Medicine

The University of Iowa

Iowa City, IA 52242

philip-polgreen

@uiowa.edu

ABSTRACT
Healthcare-associated infections (HAIs) represent a signifi-
cant burden to healthcare provision; in the United States
alone, it is estimated that approximately 2 million patients
acquire HAIs each year. As part of a larger e↵ort to un-
derstand how HAIs spread, we deployed a wireless sensor
network in the Medical Intensive Care Unit of the Univer-
sity of Iowa Hospitals and Clinics. We used data reported by
the network to estimate healthcare worker movement, inter-
actions between healthcare workers, and adherence to hand
sanitization policies.

Our experiment joins the growing yet still small collection
of sensor network deployments in healthcare settings. This
work contributes to this body of research by presenting a
comprehensive approach to pre-processing the collected sen-
sor data, thereby reducing errors and increasing robustness.
We provide two main contributions: (i) a simple and the-
oretically sound calibration method for sensor signals that
eliminates biases in pairwise sensor communication and (ii)
filters that increase the reliability of signal strength from
stationary sensors. We validate our methods by comparing
visits of healthcare workers to rooms, as discovered from the
sensor data, to ground truth room occupancy data collected
in notes.

Categories and Subject Descriptors
J.3 [Computer applications]: Life and medical sciences—
Health

General Terms
Experimentation, Measurement
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Sensor network, calibration, social sensing
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1. INTRODUCTION
Every year in the United States, healthcare-associated in-

fections (HAIs) a↵ect approximately 2 million patients, lead-
ing to approximately 100,000 deaths and generating a cost
of 5 to 45 billion dollars according to di↵erent estimations
[6, 18, 17]. This burden is intensified by the increasing ap-
pearance of antimicrobial-resistant infections [16]. It is well
known that healthcare workers are an essential vector for the
spread of HAIs [2, 20]. Frequent hand sanitization is seen
as one of the most e↵ective ways of preventing the spread of
HAIs, and several guidelines specifying when and how hand
sanitization must be performed have been developed [19, 2,
20]. These guidelines state, in general terms, that sanitiza-
tion must occur before and after interacting with the patient
and her environment, moments known as opportunities for
hand hygiene. However, there is evidence to indicate that
the rate at which healthcare workers satisfy these opportu-
nities is generally below 50% [2, 20], which is considered
insu�cient to prevent the spread of HAIs.

A primary focus of the Computational Epidemiology Re-
search Group (compepi) (http://compepi.cs.uiowa.edu/)
at The University of Iowa is to understand the spread of
HAIs at the University of Iowa Hospitals and Clinics (UIHC).
Through most of the 20th century, compartmental disease-
spread models such as SIR (Susceptible-Infected-Recovered)
and its extensions [8] have provided analytical and computa-
tional tools for understanding the dynamics of disease spread
in a relatively homogeneous population. With the availabil-
ity of relatively cheap mobile technology that can report lo-
cation, movement, etc., research in computational epidemi-
ology has started to move away from the assumption that
the underlying population is homogeneous and has instead
started to rely on fine-grained data on individual location
and movement. As part of a larger e↵ort to understand the
spread of HAIs at the UIHC, the compepi group deployed
a wireless sensor network in the 20-bed Medical Intensive
Care Unit (MICU) of the UIHC from June 1 to June 10,
2011. The goal was to measure both the interactions be-
tween healthcare workers and hand hygiene adherence. We
continuously measured healthcare worker location informa-
tion as well as their proximity with respect to each other, and
recorded soap dispenser usage. The recorded data enables
an understanding of contact patterns within the MICU, in-
teractions between healthcare workers and patients, hand
hygiene adherence, and how the proximity to other workers
a↵ects this adherence. This experiment is a follow-up of a



previous, similar deployment by the compepi group in the
same unit [9].

Before the collected data can be used for the purposes
stated above, it needs to undergo substantial pre-processing
due to a number of problems with the sensor network tech-
nology and constraints on the deployment of the network.
For example, even though the sensor motes had identical
specifications, we detected consistent biases in pairwise com-
munication between certain pairs of motes, e.g., mote A
would consistently perceive a higher signal strength than
mote B whenever motes A and B communicated with each
other. Another problem was significant: rapid fluctuation
in received signal strength, most likely caused by human
movement, temporarily blocked signals.

In this work, we present a systematic approach for pre-
processing the data collected through such a wireless sen-
sor network experiment. We have two main contributions.
First, we propose a simple and theoretically sound algorithm
for calibrating signal strength readings in the context of re-
ciprocal communication so as to remove biases in pairwise
communication, which eliminates the need of carefully cali-
brating sensors individually. This method saves deployment
time and uses all the data collected in the experiment. Sec-
ond, we introduce several filters aimed at reducing signal
fluctuations while keeping signal strengths reliable. These
filters have to balance ignoring low signal strength values,
which might have been caused by signal blockages, against
paying close attention to low signal strength values that
might indicate that the healthcare worker has moved away.
We also propose mechanisms to deal with other problems
in the data caused by clock drifts. Our pre-processing is
aimed at reducing false positive and false negatives associ-
ated with the identification of events such as the visit by a
healthcare worker to a room and the use of a soap dispenser
by a healthcare worker. We conclude by presenting a sim-
ple verification for our pre-processing approach in which we
show that rooms that are known to be empty at the begin-
ning of a shift can be easily identified as being so by the
sensor network data.

1.1 Related Work
Our experiment joins an increasing collection of wireless

sensor network deployments in healthcare settings for mea-
suring contact networks [9, 4, 12, 10] and electronic moni-
toring of hand hygiene adherence [13, 14]. But the number
of experiments conducted so far is small and, thus, sharing
experience is valuable. On the challenges posed by the de-
ployments, Kazandjieva et al reported di�culties associated
to sensor malfunction due to human factors, and ordered
the recorded data by time using reference orders instead of
clock synchronization [11]. Cattuto et al deployed a network
of sensors that could not transmit further than 1-1.5 meters,
which limited and simplified data processing [1, 10]. Frig-
gery et al deployed a sensor network more similar to ours
and detailed their data processing challenges in detail [4,
12]. Their main challenge arose from the unreliability of sig-
nal strengths to measure distance because signals attenuate
with distance as well as with obstacles. Their visit detection
method is similar to ours, the main di↵erence being in that
they use a single threshold while we apply a filter before
testing thresholds, to minimize the e↵ect of blocked signals
on raw RSSI readings.

2. DEPLOYMENT DETAILS

2.1 Instrumentation
The objective of the experiment was to continuously record

interpersonal contacts between healthcare workers in the
MICU, which rooms were visited in the unit, and the work-
ers’ behavior with respect to hand washing. We did this
through the deployment of a wireless sensor network that
monitored the distance among workers and between workers
and key physical locations, while also registering soap dis-
penser usage. We embedded Crossbow Telos Rev.B sensor
modules [15] in wearable sensors or badges and stationary
sensors or beacons. Figure 1 shows a Crossbow Telos Rev.B
sensor module with an added battery and USB interface,
and some sensor nodes. Badges were housed in recycled
pagers, so healthcare workers could carry them on pockets
at hip level. Beacons included pyramids, bedmotes and in-
strumented soap dispensers. Pyramids and bedmotes were
to stay in a fixed location, typically on top of furniture and
wall ledges, so their shape was designed to maximize sta-
bility. Instrumented soap dispensers consisted of recycled
soap dispensers embedded with a sensor module that was
activated upon usage.

Figure 1: Sensors used in the experiment: (a) Cross-

bow Telos Rev.B, (b) wearable sensors or badges, (c)

badges labelled by job type, (d) bedmote, (e) pyra-
mid, (f) instrumented soap dispenser.

Proximity was sensed through the Received Signal Strength
Index or RSSI; Crossbow Telos Rev.B sensor modules have
an IEEE 802.15.4-compliant radio, meaning that all com-
munication was performed through packets and that those
packets always had a RSSI value associated to them [15].
The RSSI is a measure of the amount of power transmitted
during communication. In Crossbow Telos Rev.B modules,
this measure is linearly related to the logarithm of the trans-
mitted power, and thus, to the logarithm of the distance be-
tween the antennas in absence of obstacles (refer to Chapter
1 of [5]). The antennas exhibit little di↵erences in gain with
angles. However, obstacles, such as the human body, can
greatly absorb signal strength.

Throughout this article, we report RSSI values as we used
them. RSSI are reported in di↵erent scales by di↵erent hard-
ware, and are largely dependent on the architecture (layout,
materials), obstacles, power settings, the structures housing
the sensors, etc., making them unique per deployment. Te-
los Rev.B report RSSI in dBm, which we made positive by



adding 60 and discarded negative values as too insignificant.
Beacons had an output power of 0 dBm while badges had
an output power of -7 dBm, approximately.

We programmed the network in an asymmetric fashion.
While badges, pyramids and bedmotes frequently sent pack-
ets informing their surrounding sensor nodes about their
proximity, only badges recorded data. We also limited soap
dispensers only to send data, which occurred only upon ac-
tivation. When activated, soap dispensers would send three
packets consecutively to guarantee reception.

The frequency at which badges, pyramids and bedmotes
sent packets was identical. Packets would be sent every 7-12
seconds with randomization introduced to minimize packet
collision and subsequent loss. The frequency was tuned to
save battery life and reduce the amount of data recorded.
In a similar way, clock synchronization occurred infrequently
and through simple computation: badges would inform their
time-stamp to their surrounding badges, which they would
assume only if it was ahead of their own clock.

2.2 Execution
Sensors were placed in the unit according to their purpose:

bedmotes were placed inside bedrooms (on a beam above
patient beds), pyramids were placed outside bedrooms, in
corridors and on top of furniture, and soap dispensers were
placed outside and inside bedrooms. Figure 2 shows the
floorplan of the MICU and the placement of the sensor nodes
for the experiment.

Figure 2: Placement of the stationary sensors or

beacons in the Medical Intensive Care Unit.

Once the unit was instrumented, two researchers wore sev-
eral badges and walked around the unit with the purpose of
collecting ground truth location information. In particular,
they went to the door of each bedroom, standing still for
about one minute per room, without going farther inside.
This process gave us ”ground truth” RSSI values for com-
munication between bedmotes and badges at the door of
corresponding rooms.

The experiment was conducted after this setup. Between
shifts (at 6 am and at 6 pm), a researcher would collect
and distribute badges to the healthcare workers according to
their job type. We did not record any additional information
about workers to respect their anonymity. We distinguished
six job types: day doctors, day nurses, day critical care per-
sonnel, night doctors, night nurses and night critical care
personnel. Each badge’s data was copied and erased each
time the badge was collected.

A computer server was set up to monitor the health of the
sensor nodes. This functioned as follows: a probe would be

sent to the network asking a reply for every sensor node. If
a node did not reply, it was examined and possibly replaced.
Soap dispensers required periodical attention because their
pumps would stop working or they would run out of soap.

2.3 Collected data
Upon completion of the experiment, we had collected data

of 10 day and 9 night shifts. We merged all the data corre-
sponding to each shift in single files structured as:

receiver time sender rssi
... ... ... ...
77 2011-06-09:20:22:05 31 20
82 2011-06-09:20:22:05 79 17
78 2011-06-09:20:22:06 192 20
31 2011-06-09:20:22:06 195 25
... ... ... ...

Each line corresponds to a packet received by a badge.
The time field contains the time-stamp according to the
badge receiving the packet. The receiver field contains the
id number of the badge receiving the packet. The sender

field contains the id number of the badge sending the packet.
Finally, the rssi field contains the RSSI value associated to
the reading. Each file was sorted according to the time field.

Packet loss was predominant when sensors were distant.
For instance, for RSSI = 15,packet loss was about 50%
(average over windows of 1 minute). Packet loss, however,
decreased dramatically as RSSI values rose, being around
10% for RSSI = 30 and below 3% for RSSI � 40.

2.4 Data processing challenges
Our main objective was to identify two types of events:

(i) visit identification: when a worker visited a room; and
(ii) hand hygiene identification: when a worker used a soap
dispenser. We are also interested in when pairs of workers
are within some range of each other. However, before we can
do any of these tasks, we needed to remove artifacts in the
data that were due to unreliability of sensors or blockages
of signals.

When inspecting the collected RSSI values, we found that
they were subject to strong fluctuations. Ideally these fluc-
tuations would have been due to movement of workers, but
that was not the case. Figure 3 shows some fluctuations in
received RSSIs between a badge and a bedmote. The worker
went inside the bedroom between minutes 2 and 3; we know
so because RSSI � 45 implies that the worker was inside
the room for this pair of sensors. We also see that the RSSI
alternated between being greater than 45 and smaller than
45 approximately every 8 seconds. It is unlikely that the
worker entered and left the room at such frequency. We
conjecture that RSSI fluctuations must have been caused by
signals being blocked, besides movement.

One could suggest using a moving average RSSI filter to
reduce the variability of the RSSI values. However, flat av-
erages are misleading; the average RSSI between minutes 2
and 3 is roughly the same as in minute 16, yet the worker
was outside the room in the later. (Figure 3 depicts a mov-
ing average consisting of 5 observations.) Instead, we must
notice that not all RSSI values are as reliable. Since at-
tenuation can be caused by blocked signals, higher values
are more reliable than smaller ones, and smaller values are
specially unreliable when surrounded by greater ones. We
must design a filter that discriminates between RSSI values.
The application of such filter is visit detection. Proximity



Figure 3: RSSI fluctuations in the communication

between two sensors: badge 1 and bedmote 188.

The blue triangles represent the raw RSSI values

while the dotted red line represents their moving

average.

between workers is always changing and fluctuations can be
well explained by movement in such case.

We also observed that the RSSI reported by badges in
reciprocal communication was sometimes systematically bi-
ased: one sensor could read RSSI values systematically higher
than its counterpart. Figure 4 illustrates one such situation.
This should not be physically possible if the sensors were
exactly identical. It is thus necessary to remove such biases
to ensure the signal strengths they report share the same
scale.

Figure 4: Example of systematically biased commu-

nication between two sensors: badges 45 and 46.

3. SENSOR CALIBRATION

3.1 Badge-to-badge asymmetries
Further analysis of the biases between RSSI values in re-

ciprocal communication shows that reciprocal readings fol-
low a linear dependence. Figure 5 illustrates three pairs of
badges that are unbiased towards each other and it also il-
lustrates three pairs of badges that are biased toward each
other. Each point in these plots represents a 30 second win-
dow in which both sensors read 3 or 4 messages from their
counterparts. The RSSI values assigned to each window cor-
respond to the arithmetic averages of the readings at each
sensor.

These asymmetries imply that not all sensors perceive the
RSSI in the same scale. From Fig. 5, we see that what is
RSSI = 50 for badge 45 roughly corresponds to RSSI = 60
for badge 46. (Later we show that RSSI of these magnitudes
are very important in the analysis.) Therefore, we needed
to unify the RSSI in the same scale.

Unbiased Biased

Figure 5: RSSI in reciprocal communication. The

three plots to the left depict nearly symmetrical

readings. The three plots to the right depict asym-

metrical readings. The dotted red line illustrates

the bias (inclination) of the reciprocal readings and

the dotted purple line illustrates the identity line (in

the biased plots).

3.2 Calibration model
We now introduce the model we used to calibrate the RSSI

values read by the sensors. Let us imagine that the RSSI
values are continuously known and define x

A
AB(t) as the RSSI

sensed by badge A at time t, in the communication between
A and B. We can then write the following equation that
relates the mutual readings of two sensors:

x

A
AB(t) = aABx

B
AB(t) + bAB ,

where aAB and bAB are constants. This linear a�ne rela-
tion is inspired by the relations observed in the data (as in
Fig. 5). We have omitted error terms because this is not a
statistical model but an ideal one. However, if we were to
fit this model, we would use an additive normal error with
mean zero.

We cannot make use of the above model to calibrate the
sensors because it does not explicitly make use of a unique
scale. All of its constants are defined between pairs of sen-
sors. So, let us suppose that there exist ideal sensors with
a unique scale, and define xAB(t) as the unbiased RSSI re-
ceived by both A and B. Since they share the same scale,
xAB(t) = xBA(t). We can then write the following relation



between the RSSI of a biased sensor and the RSSI of an
idealized unbiased sensor:

x

A
AB(t) = a

0
ABxAB(t) + b

0
AB ,

where a

0
AB and b

0
AB are constants.

Let us attribute causes to the above terms. We assume
that bias can occur in the communication between antennas
due to di↵erences in gain and power output. Since Telos
Rev.B modules report signal strength in a logarithmic scale
(its RSSI is a linear transformation of the Received Signal
Strength, measured in dBm), both the volume (gain and
power at the sender) and the sensitivity (gain at the receiver)
biases are additive to the unbiased signal xAB(t). (Since the
transmitted power is E / gAgBd(t)�k, where gA and gB

are the gains, d(t) is the distance, and k > 0 is the signal
attenuation constant, then xAB(t) = log10 gA + log10 gB �
k log10 d(t)+✏. Refer to Chapter 1 of [5] for antenna theory.)
Bias can also occur in the conversion of analog signals, which
are continuous, to digital signals, which are discrete. We can
attribute the inclination a

0
AB to this source of bias, as well

to an additional constant term in the readings.
Considering the above relations between the constants and

the sensors, we assume the following calibration model:

x

A
AB(t) = sA (xAB(t) + vB) + cA,

where sA is the proportional scale bias of badge A (an elec-
tronic bias), vB is the volume of badge B, and cA are the
additive biases at badge A, which include its antenna sen-
sitivity and electronic bias. The error terms are introduced
when we take into account that we only have a spare sample
of the RSSI values.

Upon performing linear regression to the mutual RSSI
readings (e.g. as in Fig. 5), we observed that the constant
terms were often very small or that, if ignored, we could
still fit the curves quite well (R2 reductions in the second
or third decimal places). Thus, we decided to ignore the
constant biases, obtaining the simpler model:

x

A
AB(t) ⇡ sAxAB(t).

This model implies that the proportionality bias ends up
making the additive biases unimportant. This is probably
a consequence of the high RSSI readings obtained when the
badges were in close proximity, and might not apply for sce-
narios where sensors must sense neighbors that are distant.

3.3 Badge-to-badge calibration algorithm
If the previous model were to be approximately correct,

then we could estimate sA/sB by computing the ratio ↵AB =˙
x

A
AB(t)

¸
/

˙
x

B
AB(t)

¸
. In situations where sensors do not di-

rectly communicate with each other we use transitivity to
estimate this ratio. More specifically, suppose that badges A
and C did not communicate directly with each other. Then,
we could estimate sA/sC through transitivity :

sA

sC
=

sA

sB

sB

sC
) ↵AC ⇡ ↵AB↵BC ,

an estimation which can be improved by taking the average
over all intermediate badges B:

↵̃AC =
1
n

X

B

↵AB↵BC ,

where n is the number of intermediate badges B.

Estimation of the ratios ↵AB through ↵̃AB allows us to es-
timate missing ratios that we cannot compute directly from
the data. Our calibration procedure requires knowing all
the ratios ↵AB . Thus, the quality of the estimation ↵̃AB is
relevant, and we assessed it through experimentation. For
day shift 8, we computed all ratios ↵AB and then estimated
them using ↵̃AB . Figure 6 shows the results for day shift
8. Points far from the cloud correspond to ratios estimated
using few observations. The estimation becomes tight when
the other shifts are considered as well.

Figure 6: Testing the transitivity of edge-ratios in

day shift 8. The x-axis depicts the derived ratio ↵̃AB

while the y-axis depicts the actual ratio ↵AB, for all

pairs of badges A and B that communicated.

The following calibration algorithm is an immediate con-
sequence of this empirical property. First, compute all ratios
↵AB =

˙
x

A
AB(t)

¸
/

˙
x

B
AB(t)

¸
. Then, for all pairs A, B such

that ↵AB is missing, estimate ↵AB through ↵̃AB . Once ev-
ery ↵AB is computed, proceed to compute constants ↵A =
1
n

P
B ↵AB , n being the number of badges. Then, replace

the RSSI values x

A
AB(t) by x

A
AB(t)/↵A. All the RSSI will be

in the same scale.
The rationale behind the above is very simple. If ↵AB =

sA/sB , then ↵A = 1
n
sA

P
B s

�1
B . Thus, ↵A = ↵sA, ↵B =

↵sB , etc. for ↵ = 1
n

P
A s

�1
A . Then, we have that x

A
AB(t)/sA =

xAB(t)/↵. Since all readings become proportional to the
ideal readings through the same scaling factor ↵

�1, all the
readings are in the same scale. (We could have chosen
↵A =

P
B ↵AB instead of ↵A = 1

n

P
B ↵AB , but we did

not want to modify x

A
AB(t) that much.)

3.4 Bed-to-badge calibration
Having calibrated badges, we proceeded to calibrate bed-

motes. Our objective here was to ensure that all the RSSI of
the bedmotes to their corresponding doors (RDOOR) was the
same. Di↵erences in RDOOR was mainly the consequence of
di↵erences in the distance between the doors and the beds,
which is were the bedmotes were located. These di↵erences
were partially induced by the shape of the rooms (see Fig.
2) and the orientation and location of beds with respect to
doors.

Measurement of RDOOR was performed in the walk-through.
Recall that researchers stood still in each door for about
one minute, and did not go farther inside the rooms during
the tour. The highest RSSI readings, then, correspond to
RDOOR. We took the 10 highest RSSI readings from each
bedmote, and computed the respective averages to compute
each RDOOR. Ten signals correspond, roughly, to 80 sec-
onds, and the average served as a stable measure of RDOOR.



Calibration was performed to ensure that RDOOR = hRDOORi
for all bedmotes; this value corresponds to the average of the
previous values. Let R

bedmote
DOOR be the RDOOR corresponding

to a given bedmote. We used the following formula to re-
scale the RSSI values to the bedmotes:

RSSI

bedmote
calibrated = RSSI

bedmote
raw

hRDOORi
R

bedmote
DOOR

.

We obtained hRDOORi ⇡ 51.08.

4. FILTERS FOR SIGNAL STRENGTH

4.1 Filtering soap dispenser usage
An essential part of our experiment consisted of measuring

hand sanitization. This required identifying when a soap dis-
penser was activated and which badge was the closest to it.
Since soap dispensers sent three packets upon activation and
these packets may have been received by all the surrounding
badges, soap dispenser usage was recorded with considerable
replication. In addition to this amount of replication, pack-
ets appeared to have echo in the data, consequence of the
inaccuracies of the clocks embedded within the badges. Fig-
ure 7 shows an event overheard by 7 badges during a period
of 6 seconds. Our objective is to identify the true events of
soap dispenser usage.

Figure 7: Replication of a soap dispenser usage

event. Bars of di↵erent styles represent readings

by di↵erent badges.

After examining the messages sent by the soap dispensers,
we found that nearly all of them occurred within a 10 second
interval. In that interval, the event was most likely triggered
by the worker wearing the badge that received the highest
RSSI. Given the quick fluctuations in RSSI values, we cannot
be completely sure that that was the right badge, but it is
our best estimate.

Some situations can trigger false positives (wrongly at-
tributed activation events). For example, when two badges
are identically close to the soap dispenser when it is acti-
vated. In this case, the sanitization event may be attributed
to the wrong badge, but it is unlikely that a person in this
situation is not incurring or has not incurred an opportunity,
so it does not a↵ect the final statistics.

False positives can be also produced by a person activating
a soap dispenser but not wearing a badge. In this case, the
maximum signal strength perceived among the surround-
ing badges would not be as large as when a worker wear-
ing a badge activated the dispenser. Unfortunately, given
the large variability of the signal strengths, we cannot com-
pletely rule out these cases. Still, we found a distortion in

the probability distribution of the dispenser usage readings:
the RSSI encountered a minimum. We discard this distor-
tion by asking that highest RSSI to be greater than 36.

False negatives (missed events) occurred when workers
washed their hands in quick succession using the same dis-
penser. These situations can be detected by observing the
density of messages read during a time window. Fortunately,
they seemed to be very rare.

4.2 Filtering RSSI from beacons
The objective of applying filters to proximity-related RSSI

values is two-fold. First, we would like to have continuous
estimates of RSSI values in time. For example, if we have
two successive RSSI of 40 and then 55, we would like to
know when the RSSI crossed 50. And second, we would also
like to reduce the variability in the data and make the RSSI
a better proxy for distance.

As we have discussed, signal strength attenuates with both
distance and obstacles, such as the human body. We would
like to reduce the e↵ect of obstacles as much as possible.
So far, we can only identify blocked signals when they are
surrounded by high signals. In general, we would like to
ignore quick reductions in signal strength. At the same time,
high RSSI values are more reliable than the rest, because
they can only occur in close proximity.

Our approach consists in estimating xAB(t) through a
weighted moving average of RSSI observations. We consider
observations within a time window of 60 seconds around
time t, i.e. in the interval [t � 30, t + 30]. We prioritize
observations according to their proximity in time to t and
according to their relative magnitude with respect to the
surrounding observations.

Let x⌧ be an observation (RSSI) taken at time ⌧ and let
S(t) = {x⌧ : t� 30  ⌧  t + 30} be the set of observations
associated to the time window [t � 30, t + 30]. Now, let us
define the temporal weights !T (�t) as:

!T (�t) =
1

a + �t

2
,

where a is a tuning constant. From this definition, we pro-
ceed to define the moving average filter A(t) as:

A(t) =

P
x⌧2S(t) x⌧!T (t� ⌧)

P
x⌧2S(t) !T (t� ⌧)

.

Filter A(t) defines the local magnitude of the set of observa-
tions S(t).

The temporal weights !T (�t) configures how much an
observation weights when it is �t time away from time t.
We chose a so that an observation 15 seconds away from
t weights 50% of an observation at time t; thus, we chose
a = 152.

Having defined the local magnitude, we define the rela-
tive magnitude of x⌧ as the di↵erence between x⌧ and A(t):
�x⌧ (t) = x⌧ �A(t). This definition depends on both ⌧ and
t, so an observation x⌧ has a di↵erent relative magnitude
according to the di↵erent time window in which is used.

Now, let us give priority to observations according to their
di↵erence with respect to the local magnitude. Let us define
the magnitude weight !M (x, t) as:

!M (x, t) = b + max(0, x�A(t)).

An observation below the local magnitude A(t) will receive
a minimum weight b. We have chosen b = 42 because fil-



ter A(t) is very local, and any deviation from it appears
significant.

We now introduce the full formula of our priority filter
P(t). For this filter, we use both the temporal and magni-
tude weights, and replace observations below the local mag-
nitude A(t) with the local magnitude. We define P(t) as:

P(t) =

P
x⌧2S(t) max(x⌧ ,A(t))!T (t� ⌧)!M (x⌧ , t)

P
x⌧2S(t) !T (t� ⌧)!M (x⌧ , t)

.

Note that, if constant b of !M is adjusted accordingly, this
filter is commutative with increasing linear transformation
applications on x⌧ . Thus, our calibration methods work
both before or after application of this filter.

This filter has a strong weakness: it fails to provide reason-
able estimation in the presence of strong packet loss. This
can be fixed, however, by introducing false zero observations
to set S(t). Using the modified S

0(t) = S(t) [ {x̂t�30 =
10, x̂t+30 = 10} instead of S(t) should su�ce. This way,
the false observations will have an e↵ect when there are few
readings in the interval [t� 30, t + 30].

Figure 8 illustrates the e↵ect of filters A(t) and P(t) on
the data. As we can see, the priority filter P(t) follows the
locally maximum RSSI closely.

Figure 8: Comparison of di↵erent filters for contin-

uous RSSI data.

5. INTERPRETING THE DATA

5.1 Identifying visits and measuring adherence
In principle, we wanted to test two conditions for detecting

whether a worker visited a room: that the RSSI to the room
was the highest, and that that RSSI was greater than the
RSSI value at the door. But we needed to relax these con-
ditions, because the signal strengths we obtained were not
as steady as in the walk through the unit. Instead, work-
ers often walked in front of each other, blocking the signals,
they were moving in all directions, etc, which made RSSI
unstable and di↵erent from the cleaner readings obtained in
the walk-through.

Robust visit identification required relaxing the previous
conditions. We relaxed the second condition, which required
the RSSI to be above RDOOR ⇡ 51 during the whole visit.
The condition about the closest bedmote being the closest
during the whole visit could not be relaxed, as it would truly
mean that another bedmote was closer.

We identified visits as follows. We tested whether the
highest RSSI to a bedmote was above 49 (instead of 51). If
so, the person was considered to be visiting that room. If
the closest bedmote changed or the highest RSSI fell below
43, then the visit is terminated. (RSSI = 43 may appear

to be much smaller than RSSI = 49, but a di↵erence of 6
units is small in comparison to the variability of RSSI.)

In addition, a visit is discarded if the maximum RSSI to
the bedmote did not exceed a threshold. This threshold can
be tuned to discard false positives; a value above 51 should
ensure that the worker actually went farther inside the room.
We use a value of 52.5 in the next subsections.

Now, there are two moments that are important in a visit:
room entry and room exit. Both represent opportunities for
hand hygiene, which shall be complied by the corresponding
worker by using a soap dispenser. We defined the room entry
time as the first time the RSSI to the bedroom was above
49. Analogously, we defined the room exit time as the last
moment that RSSI was above 49.

The above values have been chosen heuristically, to ap-
proximate the identification of visits in an ideal scenario.
These settings nearly minimize the identification of false vis-
its. Further relaxation of these settings would reveal more
visits while introducing errors.

5.2 Testing visits on empty rooms
To validate that our method for detecting visits, we tested

it against ground truth data. As mentioned, notes were
taken between shifts, while badges were collected and handed
out again. Which rooms were empty or labeled as special
precautions were among the items recorded in those notes.
This means that we know which rooms were empty and
which were occupied at the beginning and end of each shift
without depending on the sensor data. Therefore, we can
test whether an empty room was less likely to be visited
than an occupied room. At the beginning of each shift, vis-
its to empty rooms should be unlikely. However, as each
shift progresses, visits to empty rooms should become likely
as the rooms became occupied. But our notes report that
some rooms remained empty across shifts; visits to those
rooms should remain unlikely throughout entire shifts.

For each shift, we divided rooms into three categories:
continuously empty rooms, which were empty at the start
and at the end of the shift; non continuously empty rooms,
which were empty only at the beginning; and occupied rooms,
which were occupied at the beginning. We then proceeded
to compute the average number of visits each room received
since the start of the shift until its first, fourth and eighth
hour, per type of room. We expect the frequency of vis-
its to be significantly di↵erent across room types. Con-
tinuously empty rooms should receive significantly less vis-
its than other rooms throughout the shift. Non continu-
ously empty rooms should receive increasingly more visits
throughout the shift, as these rooms become occupied by
incoming patients. Occupied rooms should receive the high-
est number of visits throughout the day, in spite that, by
the eighth hour, the frequency of visits should decrease as
their occupying patients are discharged. In particular, we
expect the frequency of visits to non continuously empty
and occupied rooms to become similar to the eighth hour;
we expect that patient arrival and discharge rates were sim-
ilar during the experiment. (Otherwise the unit would have
had reached maximum occupancy.)

Figure 9 illustrates the measures along with their 95%
confidence intervals. Disjoint confidence intervals demon-
strate that the measures are significantly di↵erent in statisti-
cal terms [3]. The di↵erences between the measures are also
significantly di↵erent in terms of magnitude. Continuously



visited rooms received considerably less visits than the other
two types of rooms. Non continuously visited rooms received
an increasing number of visits, as expected. Occupied rooms
received considerable more visits than the previous rooms.
And to the eighth hour, we observe that non continuously
empty and occupied rooms received a similar number of vis-
its, as expected. We consider that the measures are realistic
and satisfy our expectations.

Figure 9: Average number of visits per hour and

per room, by room type: continuously empty

rooms (C.empty), non continuously empty rooms

(Nc.empty), and occupied rooms (Occupied).

6. CONCLUSIONS
This paper presents a systematic approach to pre-processing

wireless sensor network data in order to make it more robust.
The sensor network data in this paper is obtained from a de-
ployment in an intensive care unit in a hospital. However,
the approach should work for sensor data obtained in other
settings as well. After completing the pre-processing step
described in the paper, we have begun to use the sensor net-
work data for two purposes. We have used the sensor data
to identify proximity between healthcare workers and used
this to construct healthcare worker contact networks with
the intensive care unit [7]. We have also started to use this
data to correlate hand hygiene adherence to the presence of
peers nearby, thus identifying the e↵ect of peers on hand
hygiene adherence.
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