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Abstract—This paper presents a high-fidelity agent-based
simulation of the spread of methicillin-resistant Staphylococcus
aureus (MRSA), a serious hospital acquired infection, within the
dialysis unit at the University of Iowa Hospitals and Clinics
(UIHC). The simulation is based on ten days of fine-grained
healthcare worker (HCW) movement and interaction data col-
lected from a sensor mote instrumentation of the dialysis unit
by our research group in the fall of 2013. The simulation layers
a detailed model of MRSA pathogen transfer, die-off, shedding,
and infection on top of agent interactions obtained from data.
The specific question this paper focuses on is whether there
are simple, inexpensive architectural or process changes one
can make in the dialysis unit to reduce the spread of MRSA?
We evaluate two architectural changes of the nurses’ station:
(i) splitting the central nurses’ station into two smaller distinct
nurses’ stations, and (ii) doubling the surface area of the nursing
station. The first architectural change is modeled as a graph
partitioning problem on a HCW contact network obtained from
our HCW movement data. Somewhat counter-intuitively, our
results suggest that the first architectural modification and the
resulting reduction in HCW-HCW contacts has little to no effect
on the spread of MRSA and may in fact lead to an increase in
MRSA infection counts in some cases. In contrast, the second
modification leads to a substantial reduction — between 12%
and 22% for simulations with different parameters — in the
number of patients infected by MRSA. These results suggest
that the dynamics of an environmentally mediated infection such
as MRSA may be quite different from that of infections whose
spread is not substantially affected by the environment (e.g.,
respiratory infections or influenza).

Index Terms—epidemiology, environmental contamination,
healthcare-associated infections, disease transmission, infection
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control, architecture change, methicillin-resistant Staphylococcus
aureus.

I. INTRODUCTION

A healthcare acquired infection (HAI) is an infection ob-
tained in a healthcare facility during treatment for an unrelated
condition. HAIs are the most common adverse events in the
field of healthcare today and a significant cause of illness,
death, and financial burden for patients and healthcare facilities
alike. HAIs are quite prevalent: at any given time, 1 in 25 pa-
tients have an HAI [[1]], and the prevention of HAIs has become
a major public health focus of the Centers for Disease Control
and Prevention (CDC). Risk factors for HAIs include the use
of invasive medical devices (e.g., urinary catheters), surgery,
improperly cleaned healthcare facilities, poor hand hygiene
practices on the part of healthcare workers (HCWs), immuno-
compromised patients, and the overuse of antibiotics. Common
HAISs include Clostridium difficile infection (CDI), methicillin-
resistant Staphylococcus aureus (MRSA) infections, central-
line associated bloodstream infections (CLABSI), pneumonia,
surgical site infections, and urinary tract infections [[1]].

This paper focuses on the spread of MRSA among
hemodialysis patients. Hemodialysis (or, more simply, dial-
ysis) is a medical treatment that removes waste products
from the bloodstream of patients with kidney failure. At the
University of Iowa Hospitals and Clinics (UIHC), dialysis
is performed on an outpatient basis in a specialized unit
operating six days a week (excluding Sundays). Dialysis
patients are particularly susceptible to HAIs because they tend
to be immunocompromised due to other comorbidities, have
multiple and frequent exposures to the healthcare environment,
and because their care requires the use of long-term vascular
access [2]. As a result, MRSA infections are much more
common among dialysis patients than in the general population
[3]. CDC recommendations for preventing MRSA infections
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include good hand hygiene and sanitation practices [4]]. Studies
have shown that improved hand hygiene and surface/room
cleaning effectively decrease MRSA infection rates [S[|—[7].
The specific question we focus on is whether there are simple,
inexpensive architectural or process changes one can make in
the dialysis unit to reduce the spread of MRSA. In answering
this question, we seek a better understanding of the role
of the environment in the diffusion of MRSA. A one-time
intervention such as an architectural change would not only
complement standard hand-hygiene and cleaning policies, but
could result in a long-term impact.

The results presented here are fruit of an agent-based
simulation study based on ten days of fine-grained healthcare
worker (HCW) movement and interaction data collected by
our research group in the fall of 2013. The data were obtained
by instrumenting HCWs working in a nine-chair hospital
dialysis facility at the UIHC with small tracking sensor devices
(see Fig. [T). The subsequent simulations replay the HCW
interactions with patients, the environment, and each other,
while layering a detailed model of MRSA pathogen transfer,
die-off, and shedding over the agent interaction model. The
simulation maintains MRSA pathogen loads on all surfaces
including chairs, the nurses’ station, HCW hands, and pa-
tient skin and uses a dose-response function to model the
probability of a patient acquiring MRSA as a function of
their pathogen load. The simulation also models the effect
of HCW hand hygiene behaviors and environmental cleaning
strategies. To this baseline simulation, we add two distinct
architectural modifications: (i) splitting the central nurses’
station (labeled 10 in Fig. |1 into two smaller distinct nurses’
stations and (i) doubling the surface area of the nursing
station, in effect diluting the level of surface contamination.
The first of these changes is motivated by the idea that if
the nurses’ station is split then HCWs will assort themselves
into two groups and interactions across the two groups of
HCWs at the nurses’ station will be minimized. This idea of
reducing contacts among HCWs is motivated by examples of
“staff cohorting” used in infection control to reduce infection
spread [8]. To obtain HCW partitions that could lead to the
greatest reduction in HCW contact duration, we solve a graph
partitioning problem on a HCW contact network obtained from
our HCW movement data.

Somewhat counter-intuitively, our results suggest that the
first architectural modification and the resulting reduction in
HCW-HCW contacts has little to no effect on the spread of
MRSA. In fact, as shown in Table[V] this change actually leads
to a small percentage increase in the mean MRSA infection
counts (for these particular parameter settings). In contrast,
the second modification (increasing the surface area of the
nurses’ station) leads to a substantial reduction — between
12% and 22% for simulations with different parameters —
in the number of patients infected by MRSA. These results
suggest that the dynamics of an environmentally mediated
infection such as MRSA may be quite different from that of an
infection which is not substantially affected by environmental
contamination (e.g., respiratory infections or influenza). What

seems to matter in our model critically is the concentration of
pathogen among few individuals or surfaces. Reducing HCW-
HCW contacts seems to have no effect on this and, in fact,
may have the unintended effect of increasing local pathogen
concentration. On the other hand, increasing the surface area of
the nurses’ station dilutes its pathogen load and has significant
downstream effects on pathogen load on HCW hands and, in
turn, pathogen load on the patient skin. This effect seems to
have an analogue in the “dilution effect” studied in ecology
(9]l

II. HCW MOVEMENT AND INTERACTION

In previous work, we have developed an accurate yet
inexpensive and easily deployed individual movement-tracking
and contact-tracing technology that directly captures the full
spatiotemporal contact network of HCWs as they go about
their duties [[10]—[12].

A. Dialysis Unit Instrumentation

Our technology incorporates two types of elements: in-
dividual HCWs wear rechargeable badges, while additional
line-powered beacons (shown as green triangles in Fig. [I)
are placed in static locations to serve as spatial references.
Both badges and beacons consist of commercially available
wireless sensors, or motes. Whenever a beacon detects a
badge’s message, it records the unique identifier of the sender,
the received signal strength index (RSSI) associated with the
message, and the time the message was received. In a similar
fashion, badges record timestamps and identifiers of beacons
and other badges.

Four out of the 10 deployment days were short (i.e., approx
6.5 hrs, 1 shift) and the remaining six days were long (i.e.,
approx 14.75 hrs, 2 shifts). Badges were randomly distributed
to HCWs within job categories at the start of each shift [ﬂ

B. Extracting HCW Locations from Sensor Data

Because RSSI increases with proximity, the aggregation of
time-stamped badge messages recorded by the beacons can
be used to reconstruct badge positions over time, grounded in
space by the known locations of the beacons. Note, however,
that using badge-to-beacon RSSIs alone may not suffice, given
that the human body effectively absorbs RF energy and that
the physical orientation of the badge with respect to the
beacon may also reduce RSSI. Thus, in addition to badge-
to-beacon RSSI levels, we also incorporate the previous latent
positions of each badge as well as validated (i.e., confirmed by
both badges) badge-to-badge sightings in our reconstruction.
Our reconstruction algorithm’s utility function thus combines
the following three criteria: (i) minimize distances between
badges and beacons with high badge-to-beacon RSSIs, (i)
minimize badge distance from its previous location, and (iii)
minimize badge distance to other badges with high mutual

INote that, because we are not collecting identifiable patient data or the
mapping of badges to HCW identities, our institutional review board (IRB)
has determined that this research does not meet the regulatory definition of
human subjects research.
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Fig. 1. Schematic of the UIHC dialysis unit showing 9 patient chairs
and the nurses’ station in the central area. There are 22 stationary sensors
(“beacons”; shown as green triangles) placed in the unit to providle HCW
localization. Mobile sensors (“badges”) are randomly distributed within job
types to HCWs at the beginning of each shift.
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Fig. 2. Distance with respect to time for a particular HCW from each
of the nine chairs in the dialysis unit. The nine individual chair distance
plots are arranged to correspond, roughly speaking, to the position of the
chairs in the dialysis unit depicted in Fig m The three horizontal lines in
each distance plot correspond to 1ft, 3ft, and 5ft thresholds measured from
the corresponding dialysis chair, and represent three different definitions of
what it means for a HCW to be near a chair.

RSSI. Latent positions of these badges are taken to reflect the
latent positions of their respective HCWs for the remainder of
this paper.

C. Imputing Patient Dialysis Sessions from Sensor Data

Because we do not have access to patient records, we do not
know when a dialysis patient is being treated, nor do we know
when a dialysis chair is occupied. As modeling the spread
of infection requires knowledge of HCW-patient contacts, we
must first identify dialysis sessions; that is, the mapping of
patients to dialysis chairs and time intervals. To do so, we
exploit domain-specific knowledge about dialysis to impute
the start/end times of each dialysis session while making some
additional assumptions about the recurrence of each patient’s
treatment sessions.

At the start of a dialysis session, a HCW will necessarily
spend some time connecting the patient to the dialysis machine

[I13]]. Each session lasts for three to four hours [14]], and, at the
end of the session, a HCW again must attend to the patient in
order to disconnect the machine. We can use these extended
interactions between HCW and patient at the beginning and
end of each dialysis sessions along with temporal constraints
on session duration and knowledge of the number of patients
treated per week to impute the likeliest pattern of dialysis
sessions. Fig. [2] is an example of one particular HCW’s
distance from each of the nine dialysis chairs over the course
of the morning of Day 10; we can clearly see a period
of extended interaction between this particular HCW and a
presumed patient in chair 3 from 8:00 to 8:25 in the morning.

We train a machine learning system to recognize the patterns
of extended interaction that typify the beginning or end of
a dialysis session in our HCW location data. We cast the
problem as a binary classification problem: we manually select
32 distance profiles, ranging from 7.5 minutes to 28.5 minutes
in length as positive examples and then generate a training set
by sliding a 7.5 minute (56 8-second timesteps) window over
the examples to generate 2196 equal length positive training
examples. Negative training examples consist of distance se-
quences of the same length from the next closest chair and
from randomly selected sequences that do not fit the desired
pattern; these negative instances are further augmented with
random noise to improve the robustness of the model, resulting
in a total of 4392 negative training examples. We held back
20% of the 6588 training instances, and then trained a multi-
layer perceptron on the remaining 80% of the instances using
mini-batch gradient descent. Finally, applying the classifier
to all of our HCW/chair data, we generated a set of daily
patient sessions on long days by selecting entry and exit
times randomly from several candidates of predicted patterns.
The average delivered treatment time of 227 (std. dev. 21
min) roughly matched the average conventional hemodialysis
treatment duration [[14]. Between 13 to 20 patient sessions
were detected by our system for the 6 long deployment days.

III. SIMULATING THE SPREAD OF MRSA IN THE
DIALYSIS UNIT

We next perform a series of agent-based simulations that
explore the impact of our architectural design changes on
the transmission of MRSA over a fixed period of time. A
simulation consists of multiple replicates, where each replicate
replays a single day of HCW-patient, HCW-HCW and HCW-
environment interactions derived from the HCW location data
just described. Each interaction represents an opportunity for
pathogen exchange with another HCW, patient or environ-
mental surface according to a stochastic model of pathogen
transmission. Under certain conditions, a patient becomes
infected, and begins to shed pathogen which can subsequently
be spread to other patients in the same fashion. By varying
the structure of these interactions in accordance with our
proposed architectural changes, we can compare the impact
of these changes on the outcome of interest (here, the mean
number of infected patients over a collection of replicates). We
implemented the simulator in Python and allowed simulation
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replicates to run on multiple cores. A 30-day simulation runs
in 2.5 seconds for each core on Intel(R) Xeon(R) CPU ES5-
2683 v4 @ 2.10GHz.

A. Patient Scheduling and Disease Model

For each simulation, we pick a long day and repeatedly
replay the interactions of all HCWs and all patients present in
the dialysis unit on that day. The results presented in this paper
are obtained by replaying Day 10 (a long day) during which 11
HCWs were present and there were 20 dialysis sessions. This
implies a cohort of 40 patients divided into two equal groups.
We assume that each group of 20 patients dialyzes three
times per week, on either a Monday-Wednesday-Friday or a
Tuesday-Thursday-Saturday dialysis schedule (the unit does
not operate on Sunday), for a total of 520 dialysis sessions
over 30 days, or 13 dialysis sessions per patient in just over
four weeks. Patients are randomly assigned to chairs on a
particular shift (morning, afternoon, and evening) each day
in the simulation.

Patients adhere to a simple Susceptible-Infected-Susceptible
(SIS) model [15]. On the first simulated day, a single patient in
the morning session is randomly identified as infected; all other
patients are initially assumed to be susceptible. An infected
patient continuously sheds pathogen at the shedding rate o
[Sl; we assume this pathogen immediately settles on nearby
surfaces, including the patient’s skin, the hands of any HCW
who is presently in contact with the patient, and the patient’s
chair. After 10 days, a patient returns to the susceptible state.
HCWs do not adhere to the SIS model; they never become
infected, but can instead be colonized, serving to transfer
pathogen within the simulation.

B. Pathogen Transfer Model

Pathogen transfer occurs via 5 different types of contacts:
(i) HCW-patient, (if) HCW-HCW, (iii) HCW-chair, (iv) patient-
chair, and (v) HCW-nurses’ station. We measure contacts in
8-second quanta (based on the granularity of our sensor data),
and in most cases a contact is said to occur between two
entities if they are separated by a distance of at most 1 ft. The
single exception to this rule concerns HCW-HCW contacts,
where an additional parameter 7., denotes the fraction of
times (sampled uniformly at random) that the presence of two
HCWs within 1 ft of each other represents an effective contact.
The 7p,0, parameter reflects the fact that while HCWs are
likely to pass close to one another in the course of their duties,
most of these interactions do not involve any actual touching
or exchanging of physical objects that may transfer pathogen
between them.

Each contact between two entities A and B results in some
quantity of MRSA pathogen being transferred bidirectionally
between the entities [5]]. Specifically, the volume of pathogen
transferred from A to B is the volume of pathogen in the
contact area of A times the transfer efficiency between surfaces
of A and B (and vice-versa). We operationalize this principle
by making two assumptions: (i) contact between HCWs and
other entities occurs only via HCW hands and (ii) pathogen is

@ Infected patient
Susceptible patient

7 MRsA shedding
/

Agent-agent MRSA transfer

/ Agent-env MRSA transfer

1| 1t distaround env
™

Fig. 3. Diagram of the simulation model. Circles represent agents in the
simulation (green: HCW, red: infected patient, blue: susceptible patient) and
compartments surrounded by black dashed lines are environments (left: nurses
station, right: chairs). Arrows represent pathogen transfer (red dashed arrow:
shedding of an infected patient, yellow arrow: contacts between agents, brown
arrow: contacts between agents and the environment).

always spread uniformly over all the surfaces we model (i.e.,
HCW hands, patients’ skin, chair surfaces, and the surface of
the nurses’ station). With these assumptions, we can simulate
MRSA transfer during contacts by tracking the volume of
MRSA pathogen on different surfaces. We use M RS Apcy, i
1 <4 < 11, MRSAp, 5, 1 < j < 40, MRSA, &,
1<k<9,and MRSA,; to denote the volume of pathogen
on the hands of HCW ¢, the skin of patient j, the surface of
chair k, and the surface of the nurses’ station, respectively.

An example should help make this process clear. Consider
the case where HCW ¢ comes in contact with patient 5 (Fig.
shows all the possible transfer types used in our simulations).
Letting psi-s1 denote skin-to-skin transfer efficiency of the
MRSA pathogen, Aj denote the surface area of a hand, and
Ap; denote the surface area of a patient, we see that pgp-gp -
MRS A, ; is the amount of MRSA transfered from HCW
i’s hand to patient j’s skin, while pgg-s - MRS Ay, - An/Ap
is the amount of MRSA transfer from patient 5’s hand to HCW
1’s hand. In the latter expression, Ay /Apt denotes the fraction
of the patient’s skin surface that is in contact with the HCW’s
hands and therefore, thanks to our uniform pathogen mixing
assumption, M RSA,; ; - Ap/Ap is the volume of pathogen
on patient j that has the potential to be transferred to HCW
i’s hands. It should be noted that A, and A,; are considered
identical for all hands and all patients respectively. See Table
[ for formulae for the volume of pathogen transfer for all 5
types of contacts.

C. Pathogen Reduction Model

MRSA is introduced into the simulation by shedding of
pathogen from the initially infected patient, and subsequently
increased by the addition of other infected patients. In a
similar fashion, MRSA pathogen can also be removed from
the simulation via three distinct mechanisms: (i) HCWs per-
forming hand hygiene, (if) environmental cleaning, and (iii)
natural decay. Every HCW starts the day with clean hands
and accumulates pathogen over the course of the day. We use
A to denote the fraction of M RS A}, ; removed from HCW
1’s hands by performing hand hygiene [16]. In the simulation,
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we view the arrival of a HCW at a patient’s chair or the
nurses’ station as a hand hygiene opportunity. We assume that
all HCWs share the same hand hygiene compliance rate
[12]]. In a similar fashion, we use € to denote the fraction of
pathogen removed from surfaces when cleaned [[17] (note that
chairs are cleaned after each dialysis session, while the nurses’
station is cleaned only at the end of the day). Finally, MRSA
pathogen naturally decays at a rate of ug; from skin and a
rate of ju,,;, from non-porous surfaces (such as chairs and the
nurses’ stations) [5]. And while patients do not dialyze on
Sunday, our simulations do apply this natural decay process
every seventh day.

D. Disease State Transition Model

Colonization, or the presence of MRSA pathogen on a
patient’s skin, may result in the patient becoming infected. We
model this process using dose-response functions that define
the probability of infection f(MRSAp: ;) for patient j in
terms of M RSA,; j, the volume of MRSA pathogen present
on patient j’s skin [5]], [18]]. In our simulations, we used two
different dose-response models: (i) a linear model and (ii) an
exponential model. The linear model has the form f(x) = nz
where 7 is the infectivity of a pathogen. This model assumes
a linear relationship between the volume of pathogen and
the probability of an individual transitioning from susceptible
to infected. In contrast, the exponential model has the form
f(x) = 1—e~™, which assumes that each pathogen can infect
an individual independent of other pathogens [18]. For the
simulations, we used ™ € {<}7, =} because these values
produce an infection rate consistent with the observed MRSA
infection statistic in a dialysis unit [3]. An infected patient can
shed pathogen for days or weeks [7]], but usually sheds for less
than ten days if treated [19]. We assume that infected patients
transition from infected to susceptible after 10 days.

This completes the description of our baseline model. Table
shows all the parameters used in the baseline simulation
along with their values and in most cases, sources for these
values.

IV. MODELING ARCHITECTURAL CHANGES

We propose two simple, low-cost architectural changes to
the dialysis unit and evaluate their impact on MRSA diffusion.

TABLE I
VOLUME OF PATHOGEN TRANSFER

MRSA Transfer Between Entities
Source Target MRSA Transfer (Source to Target)
HCW 4 patient j Psk-sk - MRS Apcw i
patient j HCW 1 Psk-sk - MRSApt j - An/Apt
HCW ¢ HCW [ Psk-sk - MRS Apcw i
HCW ! HCW i Psk-sk - MRS Apew 1
HCW 4 chair k Psk-np - MRS Apcyw 4
chair k HCW ¢ Psk-np * MRSAC;L k- Ah/Ach
patient j chair k£ Psk-np - MRSAp j - Ap/Apt
chair k£ patient j Psk-np - MRSAch 1 - An/Ach
HCW ¢ nurses’ station Psk-np - MRS Apcw 4
nurses’ station HCW 4 Psk-np - MRS Ans - Ap/Ans

These simple architectural changes suffice to help us better
understand the role of the environment in MRSA diffusion.

A. Splitting the Nurses’ Station into Two Stations

The first simple architectural change we consider is to split
the nurses’ station V.S into two stations N.S; and N .S,, each
with surface area half of the surface area of /VS. This change
is motivated by the idea that HCWs will assort themselves into
two-equal-size groups and interaction across the two groups of
HCWs at the nurses’ station will be minimized. As a result,
MRSA pathogen transfer across the groups is substantially
reduced. We hypothesize that this architectural change will
reduce mean infection counts. This idea is motivated by
examples of “staff cohorting” used in infection control to
reduce infection spread [8].

To implement this change in the simulation, we partition the
HCWs equitably into two groups H; and Hs and assign H; to
NS;, i =1, 2. Each contact between a HCW h € H; and NS
in the original simulation is replaced by a contact between h
and NS;. Also, each contact between h € Hy and b/ € H,
that occurs at N.S is removed, modeling the fact that HCWs h
and A’ now visit different nurses’ stations. We evaluate three
methods for partitioning the HCWs equitably into /7, and Hs.
The first two methods are motivated by the aim of maximizing
the duration of contact between HCWs in H; and HCWs in Hy
so that when we delete all contacts between H; and H, this
will result in the greatest reduction of contact duration between
the HCWs. We formalize this idea via the MAXBISECTION
problem which takes as input an edge-weighted graph G =
(V, E) and whose output is required to be a partition (V1, V3)
of the vertex set such that |Vi| = [|V]/2], |Va| = [|V]|/2]
and the weight the edges in {{u,v} | v € Vj,v € Va} is
maximized. Let G,,5 (respectively, G4;;) be the HCW contact
graph whose vertices are HCWs and each of whose edges
{h,h'} are weighted by the total contact duration between h
and A’ that occurs at the nurses’ station (respectively, anywhere
in the unit).

1) Solve MAXBISECTION on G, and used the returned

partition.

2) Solve MAXBISECTION on (G, and used the returned

partition.

3) Partition the HCWs into two (roughly) equal-sized

groups and picked uniformly at random from the (')

5
possible grouping of HCWs into five and six members.

The first two grouping strategies require a priori infor-
mation on HCW mobility, whereas the random strategy is
independent of HCW mobility and is easier to implement in
practice.

B. Doubling the Surface Area of the Nurses Station

In our simulation model, we assume that MRSA spreads
uniformly on surfaces whenever MRSA transfer between en-
tities occur. Based on this assumption, increasing the surface
area of the nurses’ station has the effect of diluting MRSA
concentration at the nurses’ station. In our second, simple
architectural change, we double the surface area of the nurses’
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station. Note that we do not split the nurses’ station when we
make this architectural change. We hypothesize that doubling
the surface of the nurses’ station will reduce mean MRSA
infection counts.

The specific policies we implement based on the architec-
tural changes are summarized in Table

V. RESULTS

There are several sources of stochasticity in our simulation
model, namely (7) chair placement of initially infected patient,
(if) chair placement of remaining patients, (iif) dampening
of HCW-HCW contacts based on parameter 7y, (iv) HCW
hand hygiene compliance based on parameter -, (v) infectivity
of patients according to the probability given by the dose-
response function, and (vi) variation (by a few minutes) of
patient entry and exit times at chairs. To account for this
stochasticity, we report statistics over 1000 replicates of each
simulation. Fig. E] shows the distribution of infection counts,
i.e., the number of additional infected patients beyond the
initially infected patient, over the 1000 simulation replicates
performed using the baseline simulation parameters in Ta-
ble The mean and median infection counts for the baseline
simulation are 3.287 and 2 respectively with a std. dev. of
4.129.

Fig. [5] contains four plots comparing mean infection counts
from simulations using the five different policies mentioned
above. The simulations in Fig. [5a) use the baseline simulation
parameters, whereas the remaining figures are obtained by

TABLE II
NURSES STATION ARCHITECTURE CHANGE POLICIES

Policy Architecture Change HCW Grouping
0 None (baseline) No Grouping
1 Split into two stations Random Grouping
2 Split into two stations Max Bisection on G, s
3 Split into two stations Max Bisection on G5
4 Double the surface area No Grouping
TABLE III
BASELINE SIMULATION PARAMETERS
Parameter Symbol Value Ref
Shedding rate (cfu/cm?/8s) «a 0.001333 51|
Die-off rate on skin (/8s) sk 0.000471 151
Die-off rate on environments (/8s) Knp 0.000027 151
Transfer efficiency: skin-skin Psk-sk 0.35 151
Transfer efficiency: skin-env Psk-np 0.4 151
Area of patient’s exposed skin (em?) Apt 2000 151
Area of HCW’s exposed skin (¢cm?) | Apcw 150 -
Area of hand contact surface (cm?2) Ap 150 51
Area of chair surface (cm?2) Acn 3600 -
Area of nurses’ station (cm2) Ans 41000 -
Decontamination efficacy € 0.5 [17]
Hand hygiene compliance ¥ 0.279 [12]
Hand hygiene efficacy A 0.83 [16]
Rate of HCW-HCW contact Thew 0.05 -
Infection duration d 10 171
Dose-response function f(x) | exponential | [18]
MRSA Infectivity w — -

Infection Counts on Baseline

Dose response: exponential, pi: 1/7500000
350

300 4

2504

200

count

150 +

100

50 4

0123456 7 8 910111213 14151617 18192122
Number of additional infections for each simulation

Fig. 4. Distribution of infection counts in 1000 repetitions of the baseline
simulation using the model parameters in Table [[Tll] The mean and median
infection counts on the baseline simulation are 3.287 and 2, respectively with
a std. dev. of 4.129. The mean infection count is depicted as a vertical line.

varying one parameter each relative to the baseline. In Fig. [5b
we replace the exponential dose-response function with a
linear dose-response function. In Fig. W€ US€ Thew = 0.5
instead of 73, = 0.05, i.e., we assume that 50% of HCW-
HCW contacts are “touch” contacts as opposed to just 5%.
In Fig. we use a higher infectivity of m = 5%\/1 instead of
T = N#M Infection counts are cumulative over 30 days, and
the count per day is averaged over 1000 simulation replicates
for each policy, which are depicted as line graphs. For the
random HCW grouping policy, we repeat this procedure ten
times — each repetition likely yielding a different partition of
the HCWs. We show the distribution of the mean infection
counts over ten random HCW groups with an associated
boxplot showing the distribution over the ten repetitions.

Our main discovery is that, somewhat counter-intuitively,
splitting the nurses’ station into two stations does not much
affect mean infection counts. However, doubling the surface
area of the nurses’ station substantially reduces infection
counts for all four simulations in Fig. [5] (a ¢-test on the 1000
replicates of policy 0 and policy 4 for the 4 simulations in
Fig. @] yielded p-values 0.030, 0.041, 0.001, and 2.14e—7
respectively).

Table shows the probability of an outbreak for various
policies and parameter settings, where an outbreak is defined
as a simulation having an attack rate larger than 0.05 (more
than two additionally infected patients) [20]. Doubling the
surface area of the nurses’ station reduced the probability of
an outbreak compared to other policies.

TABLE IV
PROBABILITY OF AN OUTBREAK WHILE USING DIFFERENT POLICIES®
Parameters Policy0 | Policyl | Policy2 | Policy3 | Policy4
Baseline (Fig. [5a) 0410 | 0416 | 0.377 | 0432 | 0.367
f(z) = linear (Fig. 0.405 | 0422 | 0411 0.422 | 0.355
Thew = 0.5 (Fig.[5¢) 0413 | 0424 | 0.422 | 0430 | 0.362
™ = =17 (Fig. [5d 0.657 | 0.678 | 0.679 | 0.663 | 0.608

2Qutbreak if an attack rate for a simulation is larger than 0.05 [20]
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Cumulative infection counts for four different parameter settings. Fig. @ uses the baseline simulation parameters; the remaining plots are

obtained by changing one parameter value each from the baseline parameters. Five different graphs are present in each plot (blue line: baseline policy, purple
boxplot: random grouping policy, orange line: max bisection on Grs, green line: max bisection on Gy, and red stared line: nurses station area doubling).

In supplementary material [21] we provide the results of
a number of additional simulations, showing that our results
are robust. Specifically, using other long days (besides Day
10) as the basis for simulations does not change our results.
Neither does using other values of the parameter 7, (rate of
HCW-HCW contact).

A. Discussion

The fact that a reduction in HCW-HCW contacts that results
from the first architectural change does not consistently reduce
MRSA spread is an important take away from our work.

TABLE V
PERCENTAGE CHANGES IN MEAN INFECTION COUNTS OF DIFFERENT
POLICIES®
Parameters Policyl | Policy2 | Policy3 | Policy4
Baseline (Fig 1% 3% 9% -12%
f(z) = linear (Fig. 11% -1% 3% -12%
Thew = 0.5 (Fig.|5c) 7% 6% 2% -19%
™ = =1 (Fig. [5d) 4% 2% 1% 22%

2Percentage changes are relative to that of Policy0.

This result suggests that the dynamics of an environmentally
mediated infection such as MRSA may be quite different from
that of other infections, such as respiratory infections or in-
fluenza in which environmental contamination may not play a
substantial role. The result also cautions against the unintended
consequences of reducing HCW interactions. In seeking an
explanation for this finding, we note that the exponential dose-
response function f(xz) =1— e ™% is concave and therefore
subadditive, i.e., f(x1) + f(x2) > f(x1 + z2). Thus the
expected number of infections is higher when the pathogen
load “mixes” among patients, leading to loads x; and x5 at
two patients rather than x; + 2 at a single patient. We expect
to see more “mixing” in the baseline simulation relative to
the simulation with the first architectural change and due to
the above-mentioned property of the dose-response function,
we expect to see more infection in the baseline simulation.
However, this is not what we observe and this implies that
there are other factors at play that counter the role of “mixing”
of pathogen loads. Our hypothesis is that the extra HCW-
HCW contacts in the baseline simulation are playing a role in
spreading more MRSA among the HCWs and on the nurses’
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station, thereby reducing the overall MRSA load on patients.
We aim to test this hypothesis in future work.

The fact that increasing the surface area of the nurses’
station plays a significant role in reducing MRSA spread is
another important take away from our work. Our hypothesis
is that increasing the nurses’ station area dilutes pathogen load
at the nurses’ station, which has significant downstream effects
on pathogen load on HCW hands and, in turn, pathogen load
on the patient skin. Another way to view this phenomenon is
that a larger nurses’ station is a larger reservoir for pathogen,
thereby diluting the volume of pathogen that reaches patients.
This effect seems to have an analogue in the “dilution effect”
studied in ecology [9]. We aim to test this hypothesis in
future work, as well, by measuring pathogen loads on various
surfaces over the course of our simulations.

B. Limitations

Studies have shown that HCWs play a significant role in
the spread of HAIs and that hands of HCWs act as vectors
for pathogen transmission [22]. However, it is unclear if the
role of HCWs in this process is just as a vector or whether
HCWs could serve as a source of pathogen shedding. Albrich
et al. [23]] show that among 33,000 HCWs, 4.6% carry MRSA
and these colonized HCWs may be viewed as the source of
MRSA transmission. Our simulation model view HCWs as
vectors of MRSA transmission only. MRSA dynamics could
change if our simulations allow HCWs to start shedding
MRSA in the dialysis unit.

Additional careful sensitivity analysis over the parameter
space is needed before our results can be considered robust.
For example, our model assumes that patients start shedding
MRSA at a fixed level immediately after they get infected.
However, the amount and duration of MRSA shedding, as
well as the point in time at which an infected patient starts
shedding, may differ from patient to patient.
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