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Abstract

AudioSense integrates mobile phones and web technology to measure hearing aid performance in

real-time and in-situ. Measuring the performance of hearing aids in the real world poses

significant challenges as it depends on the patient's listening context. AudioSense uses Ecological

Momentary Assessment methods to evaluate both the perceived hearing aid performance as well

as to characterize the listening environment using electronic surveys. AudioSense further

characterizes a patient's listening context by recording their GPS location and sound samples. By

creating a time-synchronized record of listening performance and listening contexts, AudioSense

will allow researchers to understand the relationship between listening context and hearing aid

performance. Performance evaluation shows that AudioSense is reliable, energy-efficient, and can

estimate Signal-to-Noise Ratio (SNR) levels from captured audio samples.

1 Introduction

A 2008 MarkeTrak survey estimates that 11.3% of Americans (approximately 34.25 million)

suffer from hearing loss [11]. Hearing loss often leads to social isolation that has significant

deleterious effects on one's health. For example, hearing loss in older adults has been

associated not only with communication difficulties, but also with decreased health and

reduced engagement in physical activities [2]. The primary intervention for sensorineural

hearing loss and related psychosocial consequences is hearing aid amplification. However,

in spite of significant advancements in hearing aid technology during the past decade,

hearing aids use is not prevalent among people with hearing loss [9,11] and only half of

those using hearing aids are satisfied with their performance in noise [7]. Moreover, several

recent clinical studies indicate that laboratory assessments of hearing aid performance are

not predictive of their real world performance [1, 10, 13, 14]. Therefore, in order to improve

hearing aids, there is a critical need to develop assessment techniques that allow engineers

and clinicians to understand the factors that affect hearing aid performance in the real world.

Measuring the performance of hearing aids in the real world poses significant challenges as

it depends on the patient's listening context which includes characteristics of listening
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partners, listening activities, location of conversation partners, and environment.

Audiologists currently measure hearing aid performance either through self-reporting

methods or speech-in-noise tests. Self-reports are commonly used to assess the auditory

handicap and patient satisfaction with hearing aid performance. Unfortunately, self-reports

are plagued by memory biases, as patients are required to remember the circumstances in

which hearing aids performed poorly long after they occurred. Speech-in-noise laboratory

tests are used to assess the benefits of hearing aids, configure parameters of amplification

algorithms, and compare different hearing aid technologies. During a test, a patient placed in

a sound booth is presented segments of speech under different noise conditions. As these

tests are usually focusing on showcasing the various aspects of hearing aid technology (e.g.,

use of omnidirectional vs. directional microphones) they fail to be representative of the

listening contexts that patients encounter during their daily life. Accordingly, neither self-

reporting nor speech-in-noise tests are effective in describing the listening contexts observed

by patients in the real world.

In this paper, we present AudioSense, a novel system for evaluating hearing aid performance

in the real world that integrates mobile phones and web technology. The novelty of

AudioSense is that it combines subjective and objective measures of hearing aid

performance and listening contexts. AudioSense uses Ecological Momentary Assessment

(EMA) methods. EMA involves the repeated sampling of the subject's current state and

experiences in real-time [12]. We use EMA to evaluate both the perceived hearing aid

performance as well as to characterize the listening environment (e.g., listening activity,

room size, and location of speakers). This is accomplished by delivering electronic surveys

either at randomized intervals or when triggered by patients. Compared to other self-

reporting methods, EMA has the advantage of reducing memory bias since patients report

on their recent experiences (in the previous 5 - 10 minutes). Concurrently with the delivery

of surveys, AudioSense further characterizes a patient's listening context by recording their

GPS location and sound samples. Standard sound analysis techniques (e.g., computing

SNRs) are used to analyze the sound samples after upload to a web server. GPS locations

could be used to determine whether the subject is indoors or outdoors. By creating a time-

synchronized record of listening performance and listening contexts, AudioSense opens

significant opportunities to understand the relationship between listening contexts and

hearing aid performance.

The implementation of AudioSense has been evaluated across three dimensions: reliability,

energy consumption, and errors in SNR estimation. Experimental results indicate that 100%

of the surveys were successfully collected in spite of intermittent network connectivity.

Moreover, AudioSense can deliver surveys at 1.5 hours intervals for two days without

requiring the mobile phone to be recharged. Finally, we have evaluated the ability of

estimating SNR from sound files when various levels of Gaussian noise were added.

Preliminary results indicate that the average SNR estimation error was 0.62 dB.

2 Related Work

EMA has been proposed as an alternative to retrospective self-reporting methods that suffer

from memory bias. A PubMed literature search indicates that only two audiology studies
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have used computer-based EMA to date. Henry et al. [5] used EMA to evaluate the impact

of chronic tinnitus1 on the day-to-day activities of patients. Galvez [4] used EMA to

evaluate patient satisfaction with hearing aid performance. In contrast to the tools used in

these studies, AudioSense can track of patient compliance in real-time using a web portal.

Galvez reports a compliance rate of 77% in his study. We expect that by tracking patient

compliance in real-time, AudioSense may achieve higher compliance rates. More

importantly, neither study collects any sensor data to characterize the patient's context.

While audiologists continue to use relatively simple versions of EMA, computer scientists

have proposed to combine experience sampling and collection of sensor data to capture

contextual information [3, 6]. However, clinicians have not adopted these techniques since

they do not include domain-specific measures of contextual information that are necessary

to assess their medical relevance. AudioSense addresses this limitation by providing an

extensible environment for using algorithms for characterizing the listening context.

Speech-in-noise tests are widely used to assess the benefits of hearing aid noise reduction

technologies. Such tests including QuickSIN and Hearing in Noise Test (HINT) present

speech and noise at different SNRs. Among the contextual factors that would affect hearing

aid users’ speech understanding, SNR is probably the most important one. AudioSense

already includes algorithms to characterize the SNR of collected speech. In the future, we

plan to integrate AudioSense with other algorithms to further classify and characterize

listening contexts. We will leverage on the significant body of work on sound classification

(e.g., [8]); many of such algorithms are already implemented in MATLAB allowing for a

simple integration with AudioSense.

3 AudioSense System

AudioSense is designed to collect objective measures of hearing aid performance and

listening contexts in the real world. The design of AudioSense must address four key

requirements: (1) must facilitate compliance with data collection protocols over multi-week

deployments, (2) must ensure the reliability of data collection, (3) must provide an

extensible software architecture to enable signal processing and audio analysis on collected

sensor measurements, and (4) support concurrent data collection from multiple users. In the

following, we present the system architecture and software components of AudioSense,

focusing on how the system addresses these requirements.

3.1 System Architecture

AudioSense is a two-tier system that is composed of mobile phones and a backend server.

The mobile phones are carried by patients and are used to deliver surveys and collect sensor

measurements. The server backend includes three components: a web server, a database, and

a speech analysis component. The web server stores the data uploaded by clients in a

database. The web server provides a standard web portal interface to visualize the collected

data and monitor patient compliance with data collection regiment. The speech analysis

component allows the uploaded data to be automatically processed in the MATLAB

1Tinnitus is the perception of sound in the ear and may interfere with hearing.
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environment. We opted to integrate with MATLAB to provide a flexible and extensible

environment for signal processing and speech analysis. This choice is motivated by the

availability of several speech analysis algorithms as open-source components implemented

in MATLAB (e.g., VoiceBox).

The communication between mobile phones and the web server is accomplished using

HTTP over Wi-Fi or a cellular network. As patients in our studies are mobile and may live

in rural parts of Iowa, wireless connectivity may be intermittent. AudioSense is designed to

tolerate intermittent network connectivity by having each mobile phone cache the collected

data aggressively. Periodically, the mobile phone attempts to establish connections to the

web server and, when successful, it uploads the collected data. Note that the storage space

available on modern mobile phones is sufficient to store all the data that we collect even in a

multi-week deployment.

3.2 Software Components

The client-side of AudioSense runs on mobile phones and is implemented on top of Android

OS. Android OS is available on numerous mobile phones and tablet computers. AudioSense

can be deployed on any Android device. The backend server is portable and can be deployed

on Mac OS, Linux, and Windows. The web portal is implemented using the Django web

framework. SQLite is used to store data and manage metadata associated with the collected

sensor readings and surveys. MATLAB is used as a computing environment for analyzing

collected sensors measurements. Next, we describe each software component.

3.2.1 EMA Component—The EMA component runs on mobile phones and is responsible

for managing activities associated with the delivery of electronic surveys. The EMA

component addresses the needs of both software developers and patients.

A software developer can create new surveys using a simple API. A survey is modeled as a

set of questions. To keep track of the patients’ choices at run-time, we associated with each

question a variable to which we assign a value based on the response of the patient to each

question. A patient may navigate through the survey both forwards and backwards. They

may revise their answers as necessary. The next question presented to the patient depends on

his previous answers, thus allowing for adaptive surveys.

While the EMA component has an extensible architecture, we currently support two types of

questions: multiple-choice questions and scale rating. Multiple-choice questions are

rendered as a sequence of buttons whose text can be specified by the programmer (see

Figure 1(b)). The patient is allowed to select a single option out of those presented. Scale

rating questions are rendered using seekbars and the programmer can provide labels to be

rendered for the middle and ends of the bar (see Figure 1(c)).

The delivery of electronic surveys may be alarm triggered or patient-initiated. The EMA

component supports the delivery of surveys using either fixed or a randomized schedules. If

a survey was just delivered, the time offset until the next survey will be delivered is

computed by adding a constant time offset T offset and a random number picked uniformly

from the time interval [0 , T rand ] . This method allows for the generation of both fixed
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schedules (i.e., by setting T rand = 0 ) as well as randomized schedules. Typically, our

audiology surveys are delivered on average every 1.5 hours and consecutive surveys are

separated by at least 1 hour (i.e., T offset = 1 hr and T rand = 1 hr). Moreover, in order to

minimize the interruption burden to patients, clinicians can select the time interval during a

day when surveys can be delivered. An alarm outside the delivery interval will be postponed

until the next day.

Appropriate user interface design can have a significant impact on the compliance of

patients with the data collection protocols. This is particularly problematic given that

patients with hearing loss also tend to be older. Accordingly, they do not only suffer from

hearing loss but also may have impaired vision and potential loss of fine motor control.

These considerations influenced our user interface designing choices. We refined our initial

user design based on patient feedback. Accordingly, we opted for large font sizes and a color

scheme whose colors are easy to distinguish. Similarly, we opted for a large buttons and

overrode the default seekbar provided by Android OS with one that provides a larger area

that is sensitive to touch. The most consequential decisions in the user interface are related

to the delivery of alarms – notifications that the user should complete a survey. After several

iterations and feedback from patients, we decided to deliver survey alarms by vibrating the

phone, playing loud ringtones, and turn on/off the flash of the camera. An alarm sounds for

30 seconds. Our choice for an alarm that can be quite intrusive and irritating is balanced by

the ability to easily dismiss it: the patient may press the power button to stop the alarm.

Moreover, we have added a Snooze option that allows the patient to postpone completing the

survey by 30 minutes.

3.2.2 Sensor Data Collection—While surveys are administered, AudioSense records

audio at 16 KHz and GPS locations at 0.1 Hz. The data collection is triggered either by an

alarm or when the user opens the application. The data collection is stopped after a timeout

configured by the developer.

Unlike the EMA component that utilizes only a fraction of the phone's resources, the design

of sensor data collection must minimize resource utilization. To this end, AudioSense

implements a simple but effective pipeline abstraction: in a pipeline, the data flows from the

source to the sink and is transformed by the intermediary components. Each pipeline is

executed in a different thread in order to isolate the data collection from different sources.

An additional concern is the need to minimize the number of times the garbage collector is

invoked on Dalvik Virtual Machine (DVM). Each time when the garbage collector identifies

objects that are no longer used by an application it reclaims the allocated memory. The

garbage data collection operation interrupts the execution of the application between 10 –

100 ms depending on the number of objects freed. While most applications would not be

affected by this delay, when high rate audio is recorded, such delay may lead them to drop

audio frames. We ensure that the objects used in data collection never need to be garbage

collected using the following approach. Each pipeline sources manages a shared buffer pool

that contains a number of frames preallocated when the application starts. When a source

has data to write, it retrieves a frame from the buffer pool and writes the data into the frame.

Frames are pushed down the pipeline through each intermediary component, which receives

a reference to that frame. Upon reaching a sink, the frame is put back into the buffer pool of
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its source. This mechanism of cycling the frames between sources and sinks prevents the

frames from being garbage collected since they are always in use.

AudioSense includes three pipelines: audio processing, GPS processing, and file upload.

The audio and GPS pipelines have a similar behavior: they collect data from their respective

sensor source and save it to a file. Upon the completion of the data collection, the names of

files containing the sensor data are passed to the file upload pipeline. The file upload

pipeline maintains a queue of the files that are to be uploaded. The content of the queue is

saved to disk in order recover from application crashes without losing information according

to the following policy. When a new file is added to the queue, the content of the queue is

saved immediately to disk to avoid data loss in case of an application crash. In contrast,

when a file is removed from the queue, this operation does not result in an immediate write

to disk as in the worst case this would lead to a file being uploaded twice. The file upload

pipeline dequeues the names of the files and creates HTTP POST request to be sent to the

server that includes the file and additional meta-data. The metadata includes a patient

identifier, a phone identifier, a session identifier, and the time when the data was collected.

Upon a successful upload, the uploaded file is removed from the queue.

AudioSense uses the power-lock interface provided by Android OS to manage its power

usage. The EMA component acquires a lock that maintains an active screen at the start of a

survey. If the EMA component does not receive any user input for one minute, the survey

component is stopped and the screen power lock released. This indicates to the OS that it

may turn off the screen if no other application has acquired a power lock on the screen.

AudioSense maintains a CPU lock during the collection of sensor data. During the delivery

of alarms AudioSense also turns on the camera to access the flash, but it turns it off after the

30 seconds alarm is delivered. In a typical deployment, AudioSense is, on average, active

for 10 minutes every 1.5 hours resulting in an 11.11% duty cycle.

3.2.3 Web Server Backend—The AudioSense web application is implemented using the

Django web framework. Django provides basic facilities for secure website login and user

management. The AudioSense web application takes advantage of these capabilities to

provide a simple user portal. The primary goal of the user portal is to provide clinicians

access to real-time data for monitoring patient compliance.

The web application is responsible for handling the HTTP POST requests from clients. Each

HTTP request includes the actual data along with identifiers for the patient and phone where

the data was recorded. The metadata is stored in a database for easy querying while the files

are stored on the local hard drive. For security purposes, the local hard drive is encrypted. A

request also results in a new processing job being added to speech analysis component. The

web server may serve multiple clients concurrently.

The speech analysis component integrates with MATLAB environment on the server. This

allows AudioSense to be an extensible environment in which many backend algorithms can

be implemented. Currently, we have implemented a number of algorithms for estimating the

SNR from collected speech segments. Our focus on SNR is justified by the fact that it is a

Hasan et al. Page 6

Proc IEEE Int Symp Comput Based Med Syst. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



good indicator listening context. SNR computations may be triggered when an upload is

completed.

4 Performance Evaluation

The key to successfully deploying AudioSense is to ensure reliable and energy efficient data

collection. Accordingly, this section measures the reliability and power consumption of

AudioSense under a realistic deployment scenario. These results are complemented by

preliminary results from actual field deployments. Additionally, we also evaluated

AudioSense's capability of estimating SNR using the MATLAB backend.

We configured AudioSense to deliver surveys every five minutes. AudioSense operated as

follows: during the first three minutes of each data collection round, AudioSense recorded

sound samples and GPS locations. One minute within each data collection round,

AudioSense triggered an alarm for the user to complete the surveys. During the experiments,

AudioSense recorded sound and GPS locations at 16 KHz and 0.1 Hz, respectively. Under

these settings, for a data collection round, approximately 5.46 MB have been recorded and

uploaded to a web server.

Reliability

For evaluating data collection reliability, we collected data for 70 minutes during which a

total of 15 surveys were delivered. The evaluation was performed inside a home using a Wi-

Fi connection to upload the data. Multiple walls attenuated the Wi-Fi connection, which is

realistic setup for what we expect in patient homes. Additionally, to evaluate the tolerance of

AudioSense to network disconnections, we turned off the wireless connectivity of the phone

48 minutes in the experiment and restored at minute 61 of the experiment.

Figure 3 captures the reliability of the system during the 70-minute evaluation. The short red

bars indicate when the data collection was initiated. As expected, consecutive bars are

separated by 5 minutes, which is consistent with the experimental setup. The tall blue bars

indicate the time when the data was successfully uploaded on the server. The overall

reliability was 100% – all files containing the sound and GPS data have been successfully

uploaded to the server.

During the first 48 minutes of the experiment, the phone had connectivity to the server.

During this time interval, the average of the time from when data collection started until it

was successfully uploaded was 184.48 seconds. In Figure 3, this interval is captured as the

distance between consecutive short and long lines. Two factors contribute to the observed

delay: a total of 180 seconds were spent collecting the data (per our setup) and the remainder

of 4.48 seconds was spent upload the data. On average, the phone uploaded data at a rate of

9.756 Mbit/s.

The phone's wireless interface was turned off during the interval [48, 61] minutes. Without

network connectivity, AudioSense cached data from 3 data collection rounds. Upon turning

the network interface back on at minute 61, AudioSense proceeded to upload the cached

files. The number on top of bar indicates the number of audio files created/uploaded within a
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60 second interval. Accordingly, the number 3 on top of the penultimate tall bar indicates

that the three sound files that were cached, have been uploaded within a minute.

Power consumption

The power consumption was tracked using the Power Tutor [15]. Figure 4 plots the CPU

and LCD power consumption that can be attributed to AudioSense. AudioSense records data

for 3 minutes during each 5 minute data collection round. This pattern is clearly visible in

the figure for both the energy consumed by CPU and LCD: periods of high-energy

consumption alternate with periods of no energy consumption. The LCD is used for a

shorter period of time than the CPU since AudioSense starts collecting data one minute prior

to delivering an alarm and turning on the LCD. During the interval [48, 61] minutes,

additional energy is spent by the CPU trying to reestablish connectivity to the server. Under

the considered experimental setup, the AudioSense operates at a duty cycle of 60% and the

phone does not need to be recharged for at least a day.

Field Deployment

AudioSense is being used as a clinical trial that aims at evaluating the effectiveness of

hearing aid technology. Currently, AudioSense has been deployed as part of three weeklong

data collection sessions with 5 subjects. In contrast to the experimental setup discussed

above, during the field deployment, AudioSense uploads data over the cellular network.

Moreover, AudioSense operates at an 11.1% duty cycles being active (on average) for 10

minutes every 1.5 hours. Under this lower duty cycle, AudioSense can operate for three days

without recharging.

Computing SNR—A key factor that determines the difficulty of the listening task is the

SNR. We evaluated the ability of AudioSense to compute the global SNR for noisy sound

files. The noisy files were generated from a clean sound file to which Additive Gaussian

Noise was added.

The SNR was estimated using the signal level and the noise floor from the power spectrum.

Figure 5 plots the power of the signal and noise levels (red and green curve) for a file where

the SNR was 10 db. The instantaneous SNR (computed of 0.65 ms segments) is plotted in

the lower part of the graph. Figure 6 compares the actual and the estimated SNR values. On

average, the SNR error was 0.62 dB but there is a clear trend of increasing error for smaller

SNR values. This is expected since for low SNR values it is difficult to distinguish between

signal and noise.

5 Conclusions

This paper presents AudioSense a novel system for evaluating the performance of hearing

aids in the real world. AudioSense combines EMA techniques with the collection of sensor

data to characterize a patient's listening context of the user. To this end, AudioSense

integrates mobile phone technology with web applications. AudioSense is capable of

delivering customized surveys at fixed or randomized time intervals. User feedback was

integrated to refine the design of elements of user interfaces and alarms. Empirical studies

Hasan et al. Page 8

Proc IEEE Int Symp Comput Based Med Syst. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



show that AudioSense provided 100% reliability, supported the delivery of surveys 1.5 two

hours without requiring recharging the mobile phone for two days, and provide facilities to

integrate sound analysis techniques. Currently, AudioSense is used as part of a clinical trial

that will involve the evaluation of hearing aid performance in 50 patients. The study will

evaluate importance of audio samples collected in the real-world for hearing aid evaluations.
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Figure 1.
EMA component
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Figure 2.
AudioSense: Client implementation

Hasan et al. Page 11

Proc IEEE Int Symp Comput Based Med Syst. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Reliability
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Figure 4.
Power Consumption
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Figure 5.
Inferring SNR
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Figure 6.
SNR Estimation Accuracy

Hasan et al. Page 15

Proc IEEE Int Symp Comput Based Med Syst. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


