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Abstract

We present a comprehensive approach to using electronic medical records (EMR) for constructing contact networks of
healthcare workers in a hospital. This approach is applied at the University of Iowa Hospitals and Clinics (UIHC) – a 3.2
million square foot facility with 700 beds and about 8,000 healthcare workers – by obtaining 19.8 million EMR data points,
spread over more than 21 months. We use these data to construct 9,000 different healthcare worker contact networks,
which serve as proxies for patterns of actual healthcare worker contacts. Unlike earlier approaches, our methods are based
on large-scale data and do not make any a priori assumptions about edges (contacts) between healthcare workers, degree
distributions of healthcare workers, their assignment to wards, etc. Preliminary validation using data gathered from a 10-day
long deployment of a wireless sensor network in the Medical Intensive Care Unit suggests that EMR logins can serve as
realistic proxies for hospital-wide healthcare worker movement and contact patterns. Despite spatial and job-related
constraints on healthcare worker movement and interactions, analysis reveals a strong structural similarity between the
healthcare worker contact networks we generate and social networks that arise in other (e.g., online) settings. Furthermore,
our analysis shows that disease can spread much more rapidly within the constructed contact networks as compared to
random networks of similar size and density. Using the generated contact networks, we evaluate several alternate
vaccination policies and conclude that a simple policy that vaccinates the most mobile healthcare workers first, is robust
and quite effective relative to a random vaccination policy.
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Introduction

Healthcare-associated (or nosocomial) infections are a major cause

of morbidity and mortality world-wide. The Centers for Disease

Control and Prevention (CDC) estimate that 1.7 million people

are directly affected by these infections every year [1]. A significant

proportion of these infections, perhaps up to a third, are

preventable [2]. Effective measures to control healthcare-associ-

ated infections include vaccinating healthcare workers (HCWs)

against vaccine-preventable diseases, effective hand hygiene,

restricting ill HCWs from patient care, environmental cleaning,

and isolating patients infected or colonized with certain organisms

(e.g., Clostridium difficile, methicillin-resistant Staphylococcus aureus)

[3–6]. The effectiveness of these measures critically depends upon

their implementation. For example, hand hygiene is thought to be

the most effective way to prevent nosocomial infections, but less

than 50% of HCWs practice adequate hand hygiene [7–10].

Improving the effectiveness of any infection control policy

requires a clear understanding of how diseases spread within a

hospital-based population. Through most of the 20th century,

compartmental disease-spread models such as SIR (Susceptibe-

Infected-Recovered) and its extensions [11] have provided

analytical and computational tools for understanding the dynamics

of disease spread in a relatively homogeneous population. These

models are all based on the mass-action principle which posits that the

number of new cases of disease in a small time interval is

proportional to the product of numbers of infected and susceptible

hosts in the previous time interval [12]. As Meyers points out [13],

using the outbreak of SARS in China as an example, the mass-

action assumption, when applied to a heterogeneous population,

can lead to predictions of disease spread that are quite

incompatible with the observed outbreak. Contact network epidemi-

ology [13,14] aims to overcome these limitations by explicitly

modeling interactions between pairs of individuals as a network

(graph) and studying the spread of disease through the population

based on intrinsic features of the pathogen and structural properties

of the network.

The use of contact network epidemiology to understand the

spread of healthcare-associated infections within a large hospital

has been quite limited, due mainly to the absence of reliable fine-
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grained data from which to infer contact networks that make

epidemiological sense. There is now considerable research on the

structure of online social networks (see for example [15–17]), but

such online social networks are not always epidemiologically

relevant and may be structurally very different from networks of

HCWs induced by spatial and temporal proximity. Earlier work

on contact network epidemiology in the hospital setting [18–21]

start with limited data and used a number of modeling

assumptions to construct contact networks. As a result, these

approaches result in contact networks that are either highly

structured (e.g., consisting of a clique for each ward or unit) or

drawn at random from simple probability distributions. These

types of networks do not seem representative of the complexity of

interactions that occur in real hospital settings. More recent work

(e.g., [22]) has moved away from modeling assumptions and has

instead relied on fine-grained data obtained from the deployment

of wireless sensor networks. The main advantage of a sensor-

network-based approach is the resolution of the data: in the work

of Isella et al. [22] active Radio-Frequency Identification Devices

(RFID) achieve a 1.5 meter spatial resolution and a 20 second

temporal resolution. Thus this type of data can be viewed as

representing ‘‘ground truth,’’ rather than merely being a sample.

However, due to high costs of deployment, significant privacy

concerns for HCWs as well as patients, and concerns that the

technology might interfere with normal hospital operations, these

efforts are all limited in scale. For example, the work of Isella et al.

cited above uses a week-long deployment in a pediatric ward and

involves 119 participants. Other related work [23–25] has a

similar time scale (ranging from 1 day to about 27 days) and size

scale.

Our work relies on already-available data at a much larger

scale; EMR logins that span 21 months, involve about 8,000

HCWs, and are spread over a 3.2 million square foot hospital with

thousands of rooms. Besides scale and the relatively low cost of

acquisition, another advantage of the EMR data relative to sensor-

network-based approaches is the robustness of data. Devices in a

sensor network suffer from issues such as failures, battery drainage,

lack of time-synchronization, etc., and this can lead to a variety of

errors that are hard to detect and account for. What we give up by

using EMR data is the confidence that our data is a measure of

‘‘ground truth.’’ This is because our data only provides an indirect

measure of proximity –- our definition of a ‘‘contact’’ is the event

of two HCWs logging in to the EMR system in close spatio-

temporal proximity. Nevertheless, we validate the HCW networks

constructed via the EMR data using a 10-day long wireless sensor

network deployment in the Medical Intensive Care Unit (MICU)

at the UIHC [26]. Within the context of contact network

epidemiology, healthcare-associated infections are being studied

at different scales. Sensor network based data provides a fine-

grained view, but usually at the level of a hospital unit. Other

research [27–29] has focused at the regional level by using data on

patient transfers within a regional hospital network. Our research

occupies an important intermediate space between these two

scales.

Materials and Methods

Electronic medical records
Like most modern U.S. hospitals, the UIHC has an Electronic

Medical Record (EMR) system that HCWs regularly use to view

and update patient records. Information required to care for

patients is stored on the EMR system. For example, to learn the

results of laboratory tests, recent vital signs, past medical history,

medication histories, and allergies for a particular patient, a HCW

must frequently access each patient’s EMR. In addition, HCWs

involved in patient care must log in to the EMR system to both

read and update progress notes. This is true for both physicians

and nurses. Physical therapists, occupational therapists and other

consultants involved in the care of patients read notes generated by

other HCWs and generate their own notes. Thus, because

information about each patient is continually updated, a typical

HCW caring for a specific patient needs to log into the EMR

system using a terminal in close proximity to the patient during or

just before or just after visiting that patient. There are more than

17,000 terminals available for HCW use, distributed throughout

the hospital. For our purposes, each login into the EMR system by

a HCW generates a record that is stamped with a time (login and

logout times), a spatial location (a room in the UIHC), an

anonymized ID corresponding to that HCW and a job type and

department corresponding to the anonymized HCW. The UIHC

logs staff access to the EMR system resulting in about 10 million

login events per year. Table 1 shows the first five out of about 19.8

million de-identified records we were given access to. Aggregate

characteristics of the entire EMR dataset are given in Table 2

showing the large size and diversity of individuals captured by the

login data – 14,595 HCWs with 404 different job types spread

over 80 departments. On any given day there are roughly 5,000

HCWs that login to the EMR.

The hospital graph
From architectural blueprints of the UIHC facility we

constructed, by hand, a hospital graph that provides a discrete

model of the entire hospital space. Vertices in the hospital graph

represent rooms (large open spaces and hallways are divided into

‘‘room-sized’’ chunks) and edges represent adjacencies (e.g., via

doorways) between rooms (see Fig. 1). Aggregate statistics for the

hospital graph are given in Table 3. The hospital graph essentially

overlays a metric space (induced by pairwise hop-distances

between hospital vertices) on the UIHC facility and allows us to

precisely define the mobility of each HCW within a time window T
as the sum of the shortest path distances in the hospital graph

between locations of consecutive logins that occur in T . This

provides us with a well-defined way of identifying ‘‘peripatetic’’

HCWs [30] and as we will show later, vaccinating these such

HCWs is an effective strategy for reducing disease spread.

Constructing HCW contact networks
Overlaying the EMR logins on top of the hospital graph

provides fine-grained spatio-temporal coordinates for HCWs. We

use these coordinates to infer HCW contact networks as follows.

For non-negative integer parameters d and t, we say that a contact

has occurred between two HCWs if they have logged in within t

minutes of each other and within d hops of each other in the

hospital graph. A more precise description of how the HCW

contact networks are constructed follows.

Fix a time window T that corresponds to a contiguous sequence

of days during the time period that we have EMR login data for. T

is 4 weeks long in all our analysis. Let VT denote the set of users

who have logged into the EMR system at least once during time

window T . Fix integer parameters d§0 and t§0. Each HCW

u[VT has a set Lu of login sessions that have occurred during time

window T , where each login session I[Lu is defined by its start time

s(I), its end time e(I), and its location or placement p(I). The

placement p(I) of a login event I is a room (vertex) in the hospital

graph. Two HCWs u,v[VT are connected by an edge if for some

login sessions I[Lu and I ’[Lv, the distance in the hospital graph

between p(I) and p(I ’) is at most d hops and the time interval

Healthcare Worker Contact Networks
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½s(I){t,e(I)zt� intersects the time interval ½s(I ’),e(I ’)�. The edge

fu,vg is assigned an edge-weight v(u,v) that is the number of login

session pairs (I ,I ’) that satisfy the above conditions. Thus v(u,v)
represents the number of distinct contacts between u and v, within

the specified time window T, as indicated by their login records.

Varying the values of d and t allows us to consider alternate

notions of when a contact occurs. Specifically, as d and t increase,

we essentially ‘‘loosen’’ the definition of a contact, thus producing

denser contact networks. We also use an additional integer

parameter ww0 and drop from the edge set all edges with weight

less than w. This allows us the flexibility of focusing on more

consequential edges. Thus a HCW contact network is uniquely

defined by the parameter 4-tuple (d,t,w,T). By varying d and t

(thereby varying the notion of a contact) and by varying T and w,

we construct 9,000 different HCW contact networks. Possible

values of the parameters d, t, w, and T are described in Table 4.

Note: This research involves analysis of Electronic Medical

Record accesses by healthcare workers at the University of Iowa

Hospitals and Clinics. However, all of this data was anonymized

before it reached us. In a memo dated 2/17/07, Dr. A. Bertolatus,

M.D., chair of our IRB, ruled that the research described in our

submission ‘‘did not meet the regulatory definition of human

subjects research’’ and therefore ‘‘did not require review by the

IRB’’ since we are ‘‘not collecting data on identifiable human

subjects, nor collecting protected health care information.’’

Results

This section contains results from two types of analyses that we

performed on HCW contact networks. First we evaluated

structural characteristics of the HCW contact networks such as

degree distribution, diameter, community structure, diversity by

job type and diversity within job type, vulnerability to disease-

spread, etc. Our analysis reveals that despite spatial and job-

related constraints on HCW movement and interactions, there is a

strong structural similarity between the HCW contact networks we

generate and social networks that arise in other settings (e.g.,

movie or scientific collaborations, on-line friendships, etc. [15,31–

33]). Then we evaluate several alternate vaccination policies and

conclude that a simple policy that vaccinates the most mobile

HCWs first is robust and quite effective relative to a random

vaccination policy. Our results provide a large-scale confirmation

of the work of Temime et al. [30], who show the potential of

highly mobile HCWs to cause ‘‘superspreading events.’’

Structural analysis of HCW contact networks
Table 5 shows statistics for the HCW contact networks we

generate. As a convenient short hand, we use the names sparsei,

moderatei, and densei to denote the HCW contact networks with

parameters (d~1,t~0,T~i), (d~3,t~15,T~i), and

(d~5,t~30,T~i) respectively. Where not explicitely noted we

assume a threshold value of w~1. The resulting HCW contact

networks exhibit many of the same structural properties that have

been observed in social networks arising in other contexts such as

the Karate club network [34], movie collaboration [33], scientific

collaboration [31], e-mail network [32], and various online social

networking services [15]. Specifically, all of the HCW contact

networks have giant connected components that exhibit the small-

world property [33] with all pairs of individuals having a ‘‘small

degree of separation,’’ e.g., the average path length in the ‘‘giant

component’’ of the sparse1 graph (with 5,838 vertices) is only

3.592. The graphs have a high clustering coefficient [33] with most

pairs of neighboring individuals sharing a lot of contacts, e.g., the

clustering coefficient of the sparse1 graph is about 1,000 times the

clustering coefficient of the Erdös-Rényi random graph of same

size and average degree. Tables S2 and S3 show that other HCW

contact networks we construct also have very similar structural

features.

HCW contact networks also exhibit a heavy-tailed distribution of

contacts [35] with a few individuals having a large number of

contacts and most individuals having very few. This differs

significantly from the Poisson degree distribution of the Erdös-

Rényi graphs (see Fig. 2) that is sharply concentrated about its

mean. We present further analysis in the Supporting Information. Fig.

S1(a) shows the log-log plot of the degree distribution of a

moderate HCW contact network, indicating quite clearly that the

distribution is heavy-tailed, covering close to three orders of

magnitude and indicating a high level of heterogeneity among

Table 1. EMR Login Records.

login date & time logout date & time device1 location2 user ID job type & department

2006-09-01, 0:00:00.40 2006-09-01, 0:24:17.29 A00012 STAFF NURSE I, NURSING

2006-09-01, 0:00:00.43 2006-09-01, 0:00:21.76 M95089 JPP 6750 A00029 STAFF NURSE II, NURSING

2006-09-01, 0:00:01.23 2006-09-01, 0:03:55.21 J00023 STAFF NURSE II, NURSING

2006-09-01, 0:00:02.29 2006-09-01, 0:00:14.81 MA1458 RCP 1100 C00112 HOUSE STAFF III, NEUROLOGY

2006-09-01, 0:00:02.54 2006-09-01, 0:46:37.82 B71118 RCP 1047 M00018 HOUSE STAFF I, ETC

The first five of approximately 19.8 million EMR login records. The userIDs are all de-identified, though they each have an associated jobtype & department field. Of the
19.8 million records, about 40% of the records are missing fields needed for contact network construction, still leaving about 11.7 million usable records.
1Computer IDs with associated location information.
2Rooms in the UIHC (e.g., RCP 1100 is room number 1100 in the Roy Carver Pavilion of the hospital).
doi:10.1371/journal.pone.0079906.t001

Table 2. Aggregate characteristics of the EMR login data.

records days users job types departments devices locations

19.8 million 660 14,595 404 80 17,522 4,379

doi:10.1371/journal.pone.0079906.t002

Healthcare Worker Contact Networks
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HCWs. Figs. S1(a) and (b) also show our attempts to fit the HCW

contact network degree distribution to the popular heavy-tailed

power-law distribution and log-normal distribution [36]. Visually, the log-

normal seems to provide a reasonable fit, especially when viewing

the cumulative density function plot (Fig. S1(b)), however, we also

performed a Kolmogorov-Smirnov ‘‘goodness of fit’’ test (follow-

ing the approach of Clauset et al. [37]) and obtained results that

indicate that neither the power-law nor the log-normal are

particularly good fits for the HCW contact network degree

distributions. These results appear in Table S1. Even though

specific well-known heavy tailed distributions do not explain the

degree distribution of the HCW contact networks, the fact that the

degree distribution is heavy tailed has important implications for

infection control. If indeed a few people have lots of contacts, then

it seems natural to try and target this group for vaccination.

Table 6 shows the categories of HCWs who contribute the most

to the heavy tail (we use top 10%) of the degree distribution of the

sparse1 HCW contact network. The biggest contributers are

Resident Physician (241) and Nurse (198) followed far behind by

Figure 1. A marked up architectural CAD drawing fragment of the UIHC. This CAD drawing fragment corresponds to the basement (floor 0)
of the hospital, showing how it was marked by hand in order to partition large open spaces and corridors into segments that were approximately
room-sized.
doi:10.1371/journal.pone.0079906.g001

Table 3. Basic characteristics of the hospital graph.

vertices edges mean degree diameter mean path length

18,961 23,442 1.236 137 44.9

doi:10.1371/journal.pone.0079906.t003

Table 4. Parameters and their possible values for generating
HCW contact networks.

Contact Network Generation Parameters
Possible
Values

d~max. hop-distance between pairs of login locations 0,1,2,3,5

t~max. time (in minutes) between pairs of logins 0,5,10,15,30

w~min. contacts between u and v for fu,vg to exist 1,3,5,10

T~a 4-week time window 0,1, . . . ,89

Time window T~0 starts on 2006-09-03, T~1 starts on 2006-09-10, etc. With 5
values for d, 5 for t, 90 for T, and 4 for w, all independently chosen, we obtain
9,000 different HCW contact networks.
doi:10.1371/journal.pone.0079906.t004
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Physician (47), Therapist (24) and Nurse Assistant (20). It turns out

that not only do lot of Resident Physicians have high degree in

absolute numbers, but a large percentage of Resident Physicians

(just over 40%) belong to the heavy tail. A much smaller

percentage of Nurses (just over 10%) belong to the heavy tail.

Table 7 suggests that HCW contact networks have a strong

community structure, i.e., a vertex-partition into densely connected

groups, with few edges between groups. In particular, the table

shows the modularity [38–40] for vertex-partitions obtained via four

simple algorithms. Modularity values upwards of 0.3 suggest a

strong community structure [41,42]. The first two rows of the table

correspond to vertex partitions of HCWs by ‘‘job type’’ and

‘‘department’’ respectively and these partitions have a low (i.e.,

relatively poor) modularity. This is to be expected because HCWs

in the same job class (e.g., nurses) are widely dispersed across

multiple departments, and departments are often composed of

spatially dispersed units. The next two rows correspond to

algorithms that yield vertex-partitions with strong community

structure. The row labeled spatial partitions HCWs based on their

‘‘home location’’ (i.e., location of the machine into which a HCW

logs in the most) in the hospital. The spatial algorithm for

community partitioning is as follows. For each HCW u, define a

home location H(u) as the location of the computer in the hospital

graph that u logs into most often. This maps each HCW onto a

vertex in the hospital graph and moreover establishes a metric

space on the set of HCWs with the distance between HCWs u and

v being the hop distance in the hospital graph between H(u) and

H(v), denoted d(H(u),H(v)). We then partition HCWs by making

a graph where the nodes are all HCWs and an edge is placed

between pairs of HCWs, u and v, if d(H(u),H(v))vs for some

integer s§0. The connected components of this graph induce a

partition of the healthcare workers. In our experiments we

consider all possible values of s and find one (s~6) which

maximizes the modularity of the community structure. The

modularity values in the last row are obtained by using a ‘‘greedy’’

clustering algorithm, which we call maxQ, due to Clauset et al.

[42]. The success of maxQ suggests that the HCW contact

networks may contain a ‘‘hidden’’ community structure that is

independent of job type, department, or even spatial attributes.

This has important implications for infection control within a

hospital, since it makes sense to focus resources on breaking links

between communities, rather than on breaking up densely

connected communities.

It is well known (see for e.g., [13,14,33]) that structural

properties of contact networks such as those described above can

have a significant effect on how disease spreads in a population.

Fig. 3 compares the spread of disease on HCW contact networks

with the spread of disease on ‘‘corresponding’’ Erdös-Rényi

random graphs and the Configuration model random graphs

(Config) [43]. For comparison, given an HCW contact network

G with n vertices and average degree d, we generated an Erdös-

Rényi random graph with n vertices and expected average degree

Table 5. Basic structural features of HCW contact networks.

sparse1 moderate1 dense1

n (num. vertices) 6,875 6,875 6,875

m (num. edges) 82,199 174,739 332,766

SkT (mean degree) 23.91 50.83 96.8

kmax (max. degree) 321 635 1,115

s (std. dev. degree dist.) 32.84 62.86 113.877

srand (std. dev. degree dist. G(n,p)) 4.90 7.06 9.77

cc (clust. coeff.) 0.3109 0.3906 0.4379

ccrand (clust. coeff. G(n,p)) 0.003516 0.007476 0.01414

c (num. components) 873 293 144

crand (num. components G(n,p)) 1 1 1

ngiant (num. vertices giant comp.) 5,838 (84.92%) 6,547 (95.23%) 6,702 (97.48%)

mgiant (num. edges giant comp.) 81,935 (99.68%) 174,687 (99.97%) 332,717 (99.98%)

diam (diam. giant comp.) 11 13 12

S‘T (ave. path len. giant comp.) 3.592 3.131 2.746

The sparse1 , moderate1 , and dense1 instances of the HCW contact network (4 weeks starting from Sept 10, 2006) are considered here. Note that the dense graph is only
dense relative to the sparse graph; the average degree of even the dense graph is less than 1% of the complete graph size. For comparison, the corresponding statistics
for Erdös-Rényi random graphs, G(n,p), with same size (n) and same mean degree (SkT) are also provided.
doi:10.1371/journal.pone.0079906.t005

Figure 2. Degree distributions of the moderate1 HCW contact
network and corresponding Erdös-Rényi random graph. The
Erdös-Rényi random graph has the same number of vertices and
average degree as the moderate1 HCW contact network. The x-axis is
truncated to 200, omitting 233 HCWs (3:39%) who make up the
remainder of the heavy-tailed distribution. The maximum degree in the
contact network is 635.
doi:10.1371/journal.pone.0079906.g002
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equal to d. Similarly, we generated a Config graph that has the

same degree distribution as G. Our simulations show that indeed,

under conditions that approximate an influenza outbreak, disease-

spread dynamics can be quite different on HCW contact networks

relative to corresponding Erdös-Rényi and even Config networks.

The Erdös-Rényi graphs display a ‘‘threshold’’ behavior in that as

they become more dense, the number of infected people explodes.

On the other hand the Config model consistently overestimates

the number of infected people relative to the HCW network. This

points to second-order effects (e.g., assortativity) that affect disease-

spread, but are not modeled by Config [44]. The SIR simulation

used to obtain these results is described next.

For our disease spread simulation we run a SIR-based model on

our HCW contact networks. We assume that vaccination is 100%

effective and thus individuals receiving vaccination are considered

to be in the Recovered state. In our model, each individual is

assumed to have the same susceptibility to disease, have the same

infectiousness, remain sick the same amount of time, and stay

active in the contact network for the entirety of the simulation.

Infectivity is assumed to last for exactly m days. On the ith day of

being infected, 1ƒiƒm, individual j spreads the disease to

neighbor k with probability pi
j,k. We chose to model influenza and

use disease-spread parameters based on viral shedding levels

provided by Carrat et al. [45]. We set m~9 and set pi
j,k values

according to the normalized vector of shedding levels

S = (0.016645, 0.05, 0.035235, 0.02137, 0.011155, 0.007115,

0.005015, 0.003195, 0.00336) derived from plots in Carrat et al.

Specifically, the ith entry in this vector, Si denotes the shedding

level on day i. Then, we compute the pi
j,k values using the formula

pi
j,k~1{(1{Si)

w(j,k)
28 . Recall that w(j,k) is the weight of edge fj,kg,

corresponding to the total number of contacts between j and k

during time period T and therefore w(j,k)=28 represents the

average number of daily contacts between HCW j and k during a

4-week (28 day) period.

Design of effective vaccination policies
Using the generated HCW contact networks we compare five

different vaccination policies: (i) random, which vaccinates individ-

uals picked uniformly at random; (ii) degree-based, which first

vaccinates individuals with highest degree; (iii) weighted-degree-based,

which first vaccinates individuals with highest weighted degree,

defined as the sum of the weights of the edges incident on the

individual; (iv) distance-based, which first vaccinates individuals with

highest mobility; (v) login-heterogeneity-based, which first vaccinates

individuals whose EMR logins have occurred at the most number

of distinct computers. So two of our policies (degree-based and

weighted-degree-based) depend on the ‘‘connectivity profile’’ of

HCWs and two (i.e., distance-based and login-heterogeneity-

based) depend on the ‘‘mobility profile’’ of HCWs. Since we

assume that any vaccination that is administered is 100% effective

and effective immediately, we model the action of vaccinating a

person v as the deletion of the vertex v from the HCW contact

network. Fig. 4 shows the effects of different policies on a HCW

contact network. We evaluate the vaccination policies by

computing the expected number of infected HCWs starting from

a single infected individual chosen uniformly at random (Fig. 5).

The plots suggest that the two connectivity-based policies are the

best, followed by the two mobility-based policies. The findings on

connectivity-based policies confirm results obtained by Christley et

al. [46] on ‘‘small world’’ and ‘‘randomly mixing’’ graph models

and by Bell et al. [47] on the spread of HIV on a network of

cocaine injectors. Both connectivity-based and mobility-based

policies are substantially better than the random policy. Further,

the mobility-based policies approach the connectivity-based

policies in effectiveness as the underlying HCW contact network

becomes denser. The results for the mobility-based policies are in

keeping with our expectation that highly mobile individuals are

more likely to provide the ‘‘long distance’’ contacts that are critical

Table 7. Community structure of HCW contact networks.

sparse1 moderate1 dense1

job type .08 .05 .03

department .21 .15 .12

spatial .366 .312 .272

maxQ .50 .38 .33

Modularity values for partitions of sparse1 , moderate1 , and dense1 graphs
obtained via different methods. The first row corresponds to partitioning HCWs
by job type, the second corresponds to partitioning by department, the third
row corresponds to an algorithm called spatial that clusters HCWs by their
‘‘home location’’ in the hospital, and the last row is obtained by using the maxQ
algorithm (due to Clauset et al. [42]). Modularity values upwards of 0:3 suggest
strong community structure [41,42].
doi:10.1371/journal.pone.0079906.t007

Table 6. Who are the high degree nodes?

Job Category Size of Top 10% Size of Category Percent in Top 10%

Resident Physician 241 595 40.50

Physician Assistant 14 42 33.33

Inpatient Unit Clerk 35 125 28

Nurse 198 1966 10.07

Physician 47 592 7.93

Therapist 24 328 7.31

Nurse Assistant 20 464 4.31

Misc. Patient Care Clerk 13 347 3.75

Misc. Patient Care 12 348 3.45

These are the categories of HCWs that contribute the most to the tail of the degree distribution of sparse1 HCW contact network. We consider HCWs who fall in the top
10% by degree in sparse1 and identify job categories (shown in Column 1) that contribute at least 10 members to this group. Column 2 shows the contribution of each
such job category. The job categories are sorted in decreasing order of the percentage of their members who belong to the high degree group.
doi:10.1371/journal.pone.0079906.t006
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for rapid disease spread [30,33]. Fig. S2 shows that these plots

remain essentially the same for different time windows T.

Validation using sensor network data
In a recent paper [26], we showed that wireless sensor network

data gathered from the Medical Intensive Care Unit (MICU) at

the UIHC provides preliminary support for our assumption that

HCW contact networks constructed from EMR login records are a

reasonable proxy for actual physical proximity networks for

HCWs. The reader is encouraged to see this paper for details of

our sensor network deployment, characterestics of the gathered

data, and results obtained from analyzing this data. Here we

provide a brief sketch of the results from this paper.

We deployed a wireless sensor network in the MICU at the

UIHC for a period of 10 days (June 1 to June 10, 2011). The

deployed network consisted of fixed sensors (beacons) and wearable

sensors (badges). On average, 20.1 badges were handed out to

HCWs during day shifts and 13.2 during night shifts. All sensors

emitted signals periodically, every 6 to 10 seconds. Proximity

between pairs of HCWs and HCWs and fixed beacons was

estimated using received signal strength. Beacons were distributed

in hallways to help in triangulating HCW locations and they were

also placed in every patient room (in the MICU) so that HCW

visits to patient rooms could be detected.

Our overall approach to validating HCW contact networks is as

follows. We take the sensor network data to be ‘‘ground truth’’ and

construct true proximity networks in a standard manner (as in, for

example [22]). We then construct a dataset of synthetic logins from

the sensor network data using simple heuristic rules such as ‘‘a

HCW who stays in a room for 4 minutes or longer must have

accessed the patient’s EMR data from the room’s computer

terminal.’’ From the synthetic logins dataset, we construct ‘‘proxy’’

Figure 3. Disease-spread on HCW contact networks and on corresponding Erdös-Rényi and Config random graphs. (a) Plot for the
sparse1 HCW contact network with threshold w~1 and the corresponding Erdös-Rényi and Config random graphs. (b) Plot for the moderate1 HCW
contact network with threshold w~1 and the corresponding Erdös-Rényi random graph and Config random graphs. (c) Plot for the sparse1 HCW
contact networks with threshold w~4 and the corresponding Erdös-Rényi random graph and Config random graphs. (d) Plot for the moderate1 HCW
contact networks with threshold w~4 and the corresponding Erdös-Rényi random graph and Config random graphs. All plots show the number of
infected individuals on each day over the lifetime of an infection that is initiated by a single randomly chosen individual. The solid (blue) curve is for
HCW contact networks, the dashed (purple) curve is for Erdös-Rényi random graphs with size and average degree identical to the corresponding
HCW contact network, and the dotted (tan) curve is for Config random graphs. Since the random graph models does not include a mechanism for
modeling edge weights we give all edges uniform weight. The plots are obtained by using a disease-spread model that approximates the spread of
influenza (see the Materials and Methods section for details of the SIR simulation that was used).
doi:10.1371/journal.pone.0079906.g003
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HCW contact networks using the same method that we used to

construct HCW contact networks from the EMR data. The main

result of our analysis [26] is that the ‘‘proxy’’ HCW contact

networks obtained from the synthetic login dataset are good

predictors for the true proximity networks. In fact, in some cases

the prediction obtained from the ‘‘proxy’’ HCW contact networks

is better than predictions obtained by using standard link

prediction algorithms.

Discussion

Diversity within subgroups
A closer analysis of the EMR login data and the HCW contact

networks shows that there is great deal of diversity even within

groups of HCWs belonging to the same department and having

the same job type. For example, the degree and mobility

distributions of the ten largest HCW groups (see Table S4) by

department and job type all exhibit a heavy-tailed distribution (see

Fig. S3). This observation highlights the importance of large-scale

data for constructing HCW networks and the fact that approaches

that take subgroups of HCWs within the same job type or

department to be homogeneous may yield contact networks that

are not representative.

Limitations of our approach
We are aware of several problems with using EMR login data to

constructing HCW contact networks. First of all, EMR login

events are simply a sample of spatio-temporal locations of HCWs

and the fundamental question one might ask about our approach

is whether this sample is good enough. A preliminary, positive

answer to this question is provided by our use of data from the

wireless sensor network deployment in the MICU to validate

HCW contact networks. However, our validation itself suffers

from a few limitations. For one, HCW movement and login

patterns at the MICU might be quite different from those in other

UIHC units and as a result, our preliminary positive results at the

MICU may not carry over to other units. A second limitation

arises from our approach of generating synthetic logins. While we

have used simple, intuitive rules to generate synthetic logins, these

may themselves differ in structure from actual logins. We plan on

addressing these problems in the future by (i) doing wireless sensor

network deployments in other units and (ii) seeking EMR login

data that overlaps in time with our deployment.

It is also worth pointing out that even though our sensor

network deployment provides preliminary validation of our use of

EMR logins to generate HCW contact networks, it does not

provide conclusive guidance with regards to which combination of

(d,t,w) parameters are most appropriate from an epidemiology

point of view. In fact, it is quite possible that different parameter

settings are appropriate in different hospital units, due to

differences in login patterns and placement of terminals in

different units. We plan to address this issue also with further

sensor network deployments.

Other problems with our EMR login-based approach include

the absence of patients and certain categories of HCWs who don’t

regularly access the EMR system (e.g., janitors, transporters, etc).

Visitors are also not present in our data set. We have started to

analyze data acquired recently from the UIHC on patient

admissions and discharge and out-patient load and this analysis

Figure 4. The effect of different vaccination policies on a HCW contact network. (a) Small portion of the sparse1 HCW contact network. The
result of vaccinating 50% of the population using (b) the random policy, (c) the degree-based policy, and (d) the distance-based policy. The
unvaccinated network in (b) consists of a single connected component, but in both (c) and (d) the HCW contact network is ‘‘shattered’’ into many tiny
components.
doi:10.1371/journal.pone.0079906.g004
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Figure 5. Effectiveness of vaccination policies on HCW contact networks. This effectiveness is measured by the expected number of people
infected starting from a single infected individual chosen uniformly at random. We simulate an SIR-model that approximates the spread of influenza
to produce these plots (see the Materials and Methods section for details). (a) All policies evaluated on the sparse1 HCW contact network. The degree-
based and weighted-degree-based policies are generated from this network; the distance-based and login-heterogeneity-based policies are
generated from the EMR login data for T~1. (b) All policies evaluated on the dense1 HCW contact network. The degree-based and weighted-degree-
based policies are generated from this network; the distance-based and login-heterogeneity-based policies were generated from the EMR login data
for T~1.
doi:10.1371/journal.pone.0079906.g005
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will lead to models that will help populate our contact networks

with patients.

Modeling vaccination policies and their effectiveness
Fig. 5 seems to imply that the connectivity-based policies (i.e.,

degree-based and weighted-degree-based) are more effective than

mobility-based policies (i.e., distance-based and login-heterogene-

ity-based). However, the experiments in these figures give the

connectivity-based policies an unfair advantage by evaluating

them on the very same networks that they were generated from. A

more realistic evaluation would generate connectivity-based

policies on a particular HCW contact network, but evaluate these

on a different, but structurally similar network. Since we have

many HCW contact networks at our disposal, such an evaluation

is easy and is shown in Fig. 6. This plot suggests that mobility-

based policies are as effective as connectivity-based policies when

the HCW contact networks used to generate the policies only

approximately represent actual contact patterns. Furthermore,

individual mobility is easier and cheaper to track than even simple

HCW contact network characterestics of an individual such as

degree.

Conclusions

We present a comprehensive approach to constructing and

using HCW contact networks in hospitals. This can be applied at

any hospital that records access to EMR logins. The utility of

constructing HCW contact networks goes well beyond modeling

disease spread and designing control policies. HCW contact

networks can be used to solve problems in health-care optimiza-

tion [48] including the placement of resources critical for health-

care delivery and the architectural design (or redesign) of hospital

units. HCW contact networks can also be used to model and study

‘‘peer effects’’ within HCWs that seem to influence the adoption of

effective medical practices (e.g., regular hand hygiene, timely

completion of medical records, vaccine uptake) within a hospital

setting [49,50].
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