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Abstract

The Emerging Infections Network (EIN)
(http://ein.idsociety.org/) is a CDC supported
“sentinel” network of over 1400 members (currently), de-
signed to connect clinical infectious disease specialists and
public health officials. Members primarily communicate
through an EIN managed listserv and discuss disease
outbreaks, treatment protocols, effectiveness of vaccinations
and other disease-control and prevention mechanisms,
etc. Recently, researchers at Google and Yahoo! Research
have used search engine query logs to tap into the online
“wisdom of crowds” and produce disease outbreak trends
for flu. Following this work, there is now interest in trying
to monitor EIN discussions more carefully to disseminate
timely and accurate information on clinical events of
possible interest to health officials.

We model the problem of monitoring a listserv, such as

the EIN, as a type of budgeted maximum coverage problem

that we call Budgeted Maximization with Overlapping Costs

(BMOC). Even though BMOC seems superficially similar

to the budgeted maximum coverage problem considered by

Khuller et al. (Inf. Process. Lett., 1999), our problem is

fundamentally different from an algorithmic point of view,

due to its cost structure. We observe that the greedy

algorithm that provides a constant-factor approximation to

the budgeted maximum coverage problem can be arbitrarily

bad for BMOC. We also present a reduction to BMOC

from the k-densest subgraph problem that provides evidence

indicating that obtaining a constant-factor approximation

for our problem might be quite challenging. Nevertheless,

experimental runs of the greedy algorithm on the EIN data

show that greedy performs remarkably well relative to OPT.

We identify a feature of our EIN data, that we call the

overlap condition, and show that the greedy algorithm does

indeed yield a constant-factor approximation guarantee if

the overlap condition is satisfied. Using an implementation

of the greedy algorithm for BMOC on the EIN data, we

identify small sets of “bellwether” users who are good

predictors of important discussions. We provide evidence
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to show that tracking just these users reduces the cost

of monitoring the EIN significantly without causing any

important discussions to be missed.

1 Introduction

The Emerging Infections Network (EIN)
(http://ein.idsociety.org/) is a “sentinel” network
of clinical infectious disease specialists, primarily from
the United States, created in 1995 by the Infectious Dis-
eases Society of America with a Cooperative Agreement
Program award from the Centers for Disease Control
(CDC). The goal of the EIN is to assist the CDC and
other public health authorities with surveillance of
emerging infectious diseases and related phenomena
(new treatment protocols, possible side effects of new
vaccines, etc). To achieve its goal, the EIN maintains
a private listserv open to infectious disease specialists,
CDC investigators, and public health officials. There
are currently over 1400 subscribers who receive roughly
3 emails per day. Since its inception, the EIN listserv
has served over 2800 discussions on the identification
of new infectious diseases, treatments, and policy
implications.

There are a few features that distinguish the EIN
listserv from other online mailing lists. Each submission
(post) to the EIN listserv is sent to the EIN coordinator,
a person responsible for managing the mailing list. The
EIN coordinator is responsible for screening and filter-
ing each post by fixing grammatical errors, providing
links to citations, and removing any identifying patient
information. Each post received by the EIN coordina-
tor is either the start of a new thread, if that post is
about a new topic, or a response to a previous post in
an ongoing thread. Posts are collected throughout the
day and bundled into a mailing which is broadcast to
all subscribers the following morning.

Recent work at Google [9]
(http://www.google.org/flutrends/) and Ya-
hoo! Research [15] has focused on using search engine
query terms as a means of tracking the spread of
influenza. Last spring as news of swine flu spread,
numerous projects were initiated that used Twitter
posts to track and observe the spread of the infection
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(see this project at Iowa [16] for an example). The EIN
provides very different kind of information to public
health officials compared to the large scale online
efforts that attempt to tap into the “wisdom of the
crowds.” Even though the EIN is sometimes the first to
detect or report an outbreak, its real utility comes later
when clinical aspects of emerging infectious diseases
get discussed. For example, last spring when news of
the H1N1 virus was everywhere in the popular media,
the EIN was relatively quiet on this topic. However,
the EIN is currently buzzing with H1N1 related posts
as doctors and public health officials get ready to
deal with a large number of cases. EIN members are
discussing not just the emergence or spread of H1N1,
but its treatment, vaccine administration, patient care,
etc. [1, 2, 3]. One EIN member recently posted their
concern about H1N1 vaccine reacting to neural tissue
and causing Guillain-Barré Syndrome (GBS), a rare
disorder resulting in limb weakness and paralysis.
One responder identified a possible case of this and
another pointed to historical evidence supporting the
original concern. Further discussion amplified these
concerns and provided information to the CDC which
has instituted a case-finding protocol to monitor the
situation, not only for GBS but for all immunization
side-effects. Another EIN member identified a situation
where healthcare workers were refusing to treat patients
with H1N1 due to fear of exposure. Responders noted
similar experiences, identified ethical concerns, and
suggested policies. Occasionally discussion on the EIN
can lead to discovery of previously unknown virus
strains. For example, a post on the EIN in 2005
reported a number of severe pneumonia cases caused
by the adenovirus, a common cause of respiratory
illness [8]. Responses on the EIN mailing list helped
identify these initial instances as a rare strain of
community-acquired pneumonia which was previously
unrecognized and later dubbed “the killer cold.”

Identifying threads that are important is currently
ad hoc, done by simply reading all the posts that make
their way to the EIN. There is significant interest in
improving the accuracy and timeliness with which this
information is identified so that it can be distributed to
the CDC and other healthcare organizations. Motivated
by this need and the expectation that the EIN will grow
in size in the near term, our goal is to develop a simple,
low-cost procedure that can be used to sample traffic
on the EIN and predict the emergence of important
threads. Such a procedure will help focus the attention
of doctors and public health officials to important,
emerging discussions on the EIN. Ideally, we want to
be able to identify threads that have the potential
to become “important,” and ignore threads that are

“noise.” Our approach is to look at historical EIN
data (we have EIN traffic data from Feb. 1997 to
May 2009) and identify users who typically participate
in the early stages of many important threads, but
are involved in very few unimportant threads. If
we are able to identify such “bellwether” users, then
tracking these users can quickly point people who make
policies to emerging important threads that are in their
early stages of evolution, without inundating them with
irrelevant information.

Suppose we have identified a set S of these “bell-
wether” users. Anyone wanting to identify important
discussions, can follow this simple monitoring proce-
dure:

An unmarked thread t is marked “to be mon-
itored” as soon as a member of S posts to t.
Thread t is closely monitored until it dies.

The problem is then to find a set S of EIN participants
who act as “bellwethers.” That is, find a set S of users
who participate in many important threads, but do not
participate in many unimportant threads.

The above monitoring procedure presupposes a
classification of threads into important threads, those
that signal emerging phenomena worth closely following
and unimportant threads, those that are irrelevant from
the point of view of infectious disease concerns. This
classification can be done in an automated manner or
by consultation with a infectious diseases expert. This
classification can also be probabilistic: to each thread t
we associate a probability p(t) of being important (and
therefore a probability 1 − p(t) of being unimportant).
To find a set of users via whom we can track important
threads, we need to make precise the notion of partic-

ipation in a thread. Since we are interested in early
detection, we use a parameter m and say that a user u
participates in a thread t if u makes a post to thread t
within the first m mailings of the thread. Once these
notions are defined precisely, we can associate with ev-
ery subset S of users a reward r(S) and a cost c(S).
r(S) can be defined as the number of important threads
that users in S participate in. In other words, r(S)
is the number of important threads that will be moni-
tored if the set S of users is tracked. c(S) can be defined
as the number of unimportant threads that users in S
participate in. In other words, c(S) is the number of
unimportant threads that will have to be monitored if
the set S of users is tracked. More general definitions
of reward and cost are possible. For example, we could
associate with each thread t a weight w(t) and define
r(S) as the sum of the weights of important threads
that users in S participate in. The definition of c(S)
can be generalized in a similar manner. If the notion
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of important and unimportant threads is defined prob-
abilistically, then the definitions of reward and cost can
be extended to refer to expected values. In this setting,
good choices for S are obtained by solving the following
budgeted maximization problem:

max
S⊆U

r(S) s. t. c(S) ≤ B

Here U is the set of all users and B is a given cost
budget.

It is easy to see that all of the different versions of
the reward function r : 2U → R

+ mentioned above are
submodular. Recall that a function f : 2U → R

+ is said
to be submodular if f(A)+f(B) ≥ f(A∪B)+f(A∩B)
forall A,B ⊆ U . The problem of maximizing submod-
ular set functions has a long history dating back to the
70’s [14]. In their seminal work, Nemhauser et al. [14]
consider the problem of maximizing a given submodular
set function f : 2U → R

+ and show that a simple greedy
algorithm yields a (1− 1

e
)-approximation for this prob-

lem. Subsequently, several researchers have considered
the problem of maximizing a submodular set function
over all sets that satisfy a given constraint [4, 10]; more
recently these results have been extended to problems
with multiple constraints [12, 11]. Specifically, Khuller
et al. [10] suppose that each element u ∈ U is associ-
ated a cost c(u) and the cost c(S) =

∑

u∈S c(u). Their
problem is to find a subset S ⊆ U with maximum f(S)
from among all sets S ⊆ U satisfying c(S) ≤ B, they call
this the Budgeted Maximum Coverage (BMC) problem.
The BMC problem is used by Leskovec et al. [13] and
El-Arini et al. [6] in their work on monitoring the bl-
ogosphere. Our budgeted maximization problem turns
out to be fundamentally different on account of its cost
structure. For two users u, u′ ∈ U , c({u, u′}) could be
much smaller than c(u) + c(u′) because of a substantial
overlap in the unimportant threads that u and u′ par-
ticipate in. Later we consider the greedy algorithm of
Khuller et al. [10] that yields a constant-factor approx-
imation for the BMC problem and construct a simple
instance of our problem for which this greedy algorithm
performs arbitrarily poor. We also show a reduction
from the k-densest subgraph [7] problem to our problem
that provides some indication that our budgeted max-
imization problem with “overlapping costs” might be
much harder from an approximation point of view than
the problem with linear costs.

1.1 Results We model the problem of monitoring
a listserv, such as the EIN, as a type of budgeted
maximum coverage problem. Even though our problem
seems superficially similar to the budgeted maximum
coverage problem considered by Khuller et al. [10], from
an algorithmic point of view they are fundamentally

different. The budget constraint of Khuller et al. [10] is
linear, whereas ours is not. We show that the simple
greedy algorithm that works well for the problem of
Khuller at al. [10] performs arbitrarily poor on some
instances of our problem. Furthermore, by showing
a reduction from the k-densest subgraph [7] problem
we provide some evidence to indicate that obtaining a
constant-factor approximation for our problem might
be quite challenging. Nevertheless, experimental runs
of the greedy algorithm on the EIN data show that
greedy performs remarkably well relative to OPT. We
identify a feature of our EIN data, that we call the
overlap condition, and show that the greedy algorithm
does indeed provide a constant-factor approximation
guarantee if the overlap condition is satisfied. Using
an implementation of our greedy algorithm on the EIN
data, we select a set of “bellwether” users to track
and reduce the work involved in monitoring the EIN
for a year by over 75%. Additionally, we provide
evidence that this set of users participates in all of the
important threads, while keeping the participation in
“noisy” threads very low.

2 The Reward-Cost Model

Let T denote the set of threads, U denote the set
of users, and G = (T,U,E) denote the user-thread

graph, a bipartite graph with edges {u, t}, u ∈ U ,
t ∈ T , whenever user u participates in thread t. We
will make the notion of participation precise later. For
any u ∈ U , let N(u) denote the threads that user u
participates in and for any subset S ⊆ U of users let
N(S) = ∪u∈SN(u). Associated with each thread t ∈ T ,
there is a probability p(t) of thread t being important
and a positive weight w(t). For any subset S ⊆ U of
users, we define the set functions r : 2U → R

+ and
c : 2U → R

+ as:

r(S) =
∑

t∈N(S)

p(t) · w(t)

c(S) =
∑

t∈N(S)

(1− p(t)) · w(t)

For the most part, in this paper we focus on the
deterministic setting where p(t) ∈ {0, 1} for each t ∈ T
and use T+ to denote important threads, i.e., those
threads t with p(t) = 1, and T− to denote unimportant

threads, i.e., those threads t with p(t) = 0. For ease of
exposition we usually assume w(t) = 1 for all t ∈ T . The
budgeted maximization problem with overlapping costs

(BMOC) problem takes as input a user-thread graph
G = (U, T,E), probabilities p : T → [0, 1], weights
w : T → R

+, a B ∈ R
+ and aims to find a subset

S ⊆ U that maximizes r(S) while satisfying the budget
constraint c(S) ≤ B.
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Threads Users Posts Mailings per thread Posts per thread People per thread
Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

2833 1451 13,502 2.85 1.00 18.00 4.77 1.00 58.00 4.417 1.0 34.00
±1.91 ±4.62 ±3.98

Figure 1: Summary statistics of number of mailings, number of posts, and number of users per thread.

2.1 Choosing Important Threads One way to
classify threads into important and unimportant
threads is to consult infectious disease specialists. For
example, one might survey EIN subscribers or have an
online rating system in place. Since these approaches
suffer from low response rate and are not currently in
place, we develop an automated procedure for picking
important threads by assuming that any thread worth
monitoring closely will have sufficient EIN activity and
therefore such threads can be identified by character-
istics such as (a) number of mailings, (b) number of
posts, and (c) number of distinct participants. Sum-
mary statistics of threads with respect to each of these
characteristics are shown in Figure 1.

As one would expect, the distributions of the num-
ber of threads with respect to each of these character-
istics are heavy-tailed. One simple way to pick “im-
portant” threads by paying attention to all three char-
acteristics is the following. Let M∗ be the maximum
number of mailings in any thread, P ∗ be the maximum
number of posts in any thread, and D∗ be the maximum
number of distinct participants in any thread (see Fig-
ure 1). For each value of a threshold parameter thresh,
0 ≤ thresh ≤ 100, let T+(thresh) be the set of threads
whose number of mailings are within thresh % of M∗,
number of posts are within thresh % of P ∗, and num-
ber of participants are within thresh % of D∗. Figure
2a shows the cardinality of T+(thresh) for each thresh,
0 ≤ thresh ≤ 100.

2.2 Criteria for Participation Since we are in-
terested in early detection of potentially interesting
threads, we focus on posts to a thread that are made
very early on in life the thread. Specifically, we assign
values to a parameter m and say that a user u par-

ticipates in a thread t if u posts to t with the first m
mailings of t. In our experiments, we use values 1, 2,
and 3.

3 A Greedy Algorithm for BMOC

Khuller et al. [10] present a simple greedy algorithm
for the budgeted maximum coverage problem in which
the budget constraint is linear and show that this
algorithm guarantees a 1

2

(

1− 1
e

)

-factor approximation
ratio. When combined with an enumeration technique,
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(a)

Imp. Unimp.

60%
Mean Mailings 12.00 2.79
Mean # Distinct Users 25.11 4.28
Mean # Posts 33.28 4.58

70%
Mean Mailings 9.88 2.73
Mean # Distinct Users 20.23 4.14
Mean # Posts 25.06 4.41

80%
Mean Mailings 6.98 2.56
Mean # Distinct Users 14.79 3.69
Mean # Posts 16.95 3.91

(b)

Figure 2: (a) Plots the percentage of threads whose
number of mailings, number of posts, and number
of participants are all within thresh % of the cor-
responding maximum values of these characteristics.
Our experiments use thresh = 60, thresh = 70, and
thresh = 80 to pick out three candidate subsets of im-
portant threads. Since T+(thresh) ⊃ T+(thresh′) for
thresh > thresh′, we obtain larger sets of important
threads as we increase thresh from 60 to 80. With
x = 60, we pick up 18 (out of 2818) important threads,
with x = 70, we pick up 47 (out of 2818) important
threads, and with x = 80, we pick up 183 (out of 2818)
important threads. (b) As thresh increases the set of
important threads grows larger, but the distinction be-
tween important and unimportant threads measured by
number of mailings, number of posts, and number of
distinct users becomes less pronounced.
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this algorithm provides a
(

1− 1
e

)

-factor approximation
ratio. To state this greedy algorithm in the context of
our problem, we need notation for incremental reward
and cost of adding a user to our current solution. Let
S ⊆ U and u ∈ U \ S. Then,

r(S, u) = |{t ∈ T+ | t 6∈ N(S), t ∈ N(u)}|

c(S, u) = |{t ∈ T− | t 6∈ N(S), t ∈ N(u)}|

Algorithm 1 gives pseudocode for the greedy algorithm,
which we call Greedy, combining two algorithms,
which we call GreedyRatio and GreedyReward.
GreedyRatio starts with an empty set S of users
and repeatedly adds to S a user u who maximizes
r(S,u)
c(S,u) and whose addition to S does not violate the

budget constraint. Similarly, GreedyReward starts
with an empty set S of users and repeatedly adds to
S a user u who maximizes r(S, u) and whose addition
to S does not violate the budget constraint. Let
S′ be the output of GreedyRatio and S′′ be the
output of GreedyReward. The algorithm Greedy

runs GreedyRatio and GreedyReward and returns
either S′ or S′′, whichever has the greater reward.

It is easy to construct an instance of BMOC for
which Greedy performs arbitrarily poorly (see Fig-
ure 3).

x
y

1
y

2
y

3
y

K

Figure 3: A user-thread graph with red vertices (cir-
cles) denoting unimportant threads and blue vertices
(squares) denoting important threads. For this instance
with budget B = 2, Greedy will pick x and obtain a
reward of 1, whereas the optimal solution consists of
{y1, y2, . . . , yK} for a reward of K.

3.1 BMOC May be Difficult to Approxi-

mate Further bad news about BMOC is that even
a special case of BMOC is at least as hard
as the k-DensestSubgraph problem. The k-
DensestSubgraph problem [7] takes as input a graph
G = (V,E) and seeks to find a subset of k vertices
that induce a subgraph of G with maximum number
of edges. The best known approximation algorithm for
this problem yields an approximation factor of O(nα)
where α < 1

3 [7]. Improving this approximation factor
is an important open problem in the area of approxi-
mation algorithms. Chekuri [5] has sketched a simple

Algorithm 1 Greedy Algorithm for BMOC

1: GreedyRatio(U)
2: S′ ← ∅
3: U ′ ← U

4: while U ′ 6= ∅ do

5: Pick u ∈ U ′ that maximizes: r(S′,u)
c(S′,u)

6: if c(S′ ∪ {u}) ≤ B then

7: S′ ← S′ ∪ {u}
8: end if

9: U ′ ← U ′ \ {u}
10: end while

11: return S′

12: GreedyReward(U)
13: S′′ ← ∅
14: U ′ ← U

15: while U ′ 6= ∅ do

16: Pick u ∈ U ′ that maximizes: r(S′′, u)
17: if c(S′′ ∪ {u}) ≤ B then

18: S′′ ← S′′ ∪ {u}
19: end if

20: U ′ ← U ′ \ {u}
21: end while

22: return S′′

23: Greedy(U)
24: S′ ← GreedyRatio(U)
25: S′′ ← GreedyReward(U)
26: if r(S′) ≥ r(S′′) then

27: return S′

28: else

29: return S′′

30: end if
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reduction from the k-DensestSubgraph problem to
BMOC that shows that a β-approximation algorithm
for BMOC will imply a β-approximation algorithm for
k-DensestSubgraph. In fact, the reduction is from k-
DensestSubgraph to a special case of BMOC in which
each user is connected to exactly 3 threads (as in our
bad example in Figure 3). We present this reduction as
evidence that it may be difficult to find approximation
algorithms for BMOC that guarantee a small approxi-
mation factor such as a constant or even logarithmic (in
the input size).

Theorem 3.1. If there is a β-approximation algorithm

for BMOC, there is a β-approximation algorithm for k-

DensestSubgraph.

Proof. Start with the instance {G = (V,E), k} of k-
DensestSubgraph and construct a user-thread graph
H with thread set V ∪ E and and user set E. Connect
each user e = {u, v} to three threads: u, v, and e.
Designate E as the set of important threads and V as
the set of unimportant threads. Finally, set the budget
B to k. Let us call a solution S ⊆ U to BMOC maximal

if for all users u ∈ U \ S, c(S ∪ {u}) > c(S). It is easy
to verify the following claim.
Claim: G has an induced subgraph with k vertices and
m edges iff H has a maximal subset S of users with
c(S) = k and r(S) = m.

Now, suppose there exists a β-approximation algo-
rithm A for BMOC. Start with an instance {G, k} of the
k-densest subgraph problem. Transform it as specified
above to an instance H of BMOC and run A on H. The
solution is a set of users S such that

c(S) ≤ k, r(S) ≥ β ·OPT

where OPT is the maximum reward of a subset S∗

of users in H satisfying c(S∗) ≤ k. Without loss of
generality suppose that both S and S∗ are maximal.
Then |S∗| = OPT and by the above Claim, S∗ is an
edge set in G of maximum size that is induced by a
set of at most k vertices. The set S returned by the
algorithm A is also a set of edges induced by a set of
at most k vertices and since |S| ≥ β · |S∗|, we have
a solution to the k-densest subgraph problem that is
within a factor β of OPT . Note that if |S| < k we can
arbitrarily add vertices of G to S until |S| = k.

3.2 The Overlap Condition In the bad example
for the greedy algorithm, in Figure 3, the unimportant
threads have high average degree (i.e., (2K + 1)/3) rel-
ative to the average degree of important threads (which
is just 1). While this is possible in general for BMOC,
our specific criteria for identifying important and unim-
portant threads from the EIN data makes this unlikely

for our instances of the problem. We now formalize
this heuristic notion, calling it the overlap condition
and show that if we assume that the overlap condition
holds, then Greedy provides a 1

2 (1− 1
e
)-approximation.

In fact, assuming the overlap condition we can obtain a
(1− 1

e
)-approximation by using Greedy in combination

with the enumeration technique described by Khuller et
al. [10].

Let Si denote the set of the first i users selected by
GreedyRatio. Let Ui denote the remaining users, i.e.,
U \ Si and let Gi denote the bipartite graph obtained
from the user-thread graph G by deleting Si ∪ N(Si).
Thus the users in Gi are those in Ui and the threads
in Gi are those that are not “covered” by users in Si.
For any subset U ′ ⊆ Ui of users, let Gi[U

′] denote
the bipartite subgraph of Gi induced by U ′ ∪ N(U ′).
Let δ+(i, U ′) (respectively, δ−(i, U ′)) denote the average
degree of the important (respectively, unimportant)
threads in Gi[U

′]. We define the overlap condition as:

(3.1) ∀i,∀U ′ ⊆ Ui : δ+(i, U ′) ≥ α · δ−(i, U ′).

for some constant universal α. Let r(Si, U
′) (respec-

tively, c(Si, U
′)) denote the number of important (re-

spectively, unimportant) threads in N(U ′) \ N(Si). It
is easy to verify that

δ+(i, U ′) =

∑

u∈U ′ r(Si, u)

r(Si, U ′)

δ−(i, U ′) =

∑

u∈U ′ c(Si, u)

c(Si, U ′)
.

and therefore the overlap condition can be equivalently
stated as

(3.2)

∀i,∀U ′ ⊆ Ui :

∑

u∈U ′ r(Si, u)

r(Si, U ′)
≥ α ·

∑

u∈U ′ c(Si, u)

c(Si, U ′)
.

for some constant universal α.
Let OPT be an optimal set of users. Suppose

that after some number of iterations, GreedyRatio

has selected a set S of users. In the next iteration,
GreedyRatio considers an element u 6∈ S that max-

imizes r(S,u)
c(S,u) . This element may or may not be added

to S depending on whether adding u to S causes the
budget constraint to be violated. Suppose that r is the
number of iterations executed by GreedyRatio un-
til the first user u ∈ OPT is considered, but rejected
(due to violation of the budget constraint). Suppose
that ℓ users have been selected by GreedyRatio dur-
ing these r iterations. Label these users u1, u2, . . . , uℓ in
the order in which they were selected by GreedyRa-

tio and let uℓ+1 be the first user in OPT considered
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but rejected. Let ji be the iteration in which user ui

was considered. Finally, let S0 = ∅, Si = Si−1 ∪ {ui}
for each i = 1, 2, . . . , ℓ.

The following lemma uses the overlap condition
to extend a lemma in [10] to instances of BMOC in
which the overlap constraint holds. The calculations in
the subsequent lemmas are similar to those in [10], we
include these mainly for completeness.

Lemma 3.1. If the overlap condition is satisfied, then

after each iteration ji, i = 1, 2, . . . , ℓ + 1,

r(Si−1, ui) ≥ α ·
c(Si−1, ui)

B

(

r(OPT )− r(Si−1)
)

.

Proof. For each user u ∈ OPT \Si−1, due to the greedy

choice of ui, the ratio r(Si−1,u)
c(Si−1,u) is at most r(Si−1,ui)

c(Si−1,ui)
.

Therefore,

X

u∈OPT\Si−1

r(Si−1, u) ≤
r(Si−1, ui)

c(Si−1, ui)

X

u∈OPT\Si−1

c(Si−1, u)

This can be rewritten as

(3.3)

∑

u∈OPT\Si−1
r(Si−1, u)

∑

u∈OPT\Si−1
c(Si−1, u)

≤
r(Si−1, ui)

c(Si−1, ui)
.

According to the overlap condition:
∑

u∈OPT\Si−1
r(Si−1, u)

∑

u∈OPT\Si−1
c(Si−1, u)

≥ α ·
r(Si−1, OPT \ Si−1)

c(Si−1, OPT \ Si−1)
.

Combining this with 3.3 yields

(3.4) α ·
r(Si−1, OPT \ Si−1)

c(Si−1, OPT \ Si−1)
≤

r(Si−1, ui)

c(Si−1, ui)
.

Substituting into the above inequality the fact that
c(Si−1, OPT \ Si−1) ≤ c(OPT ) ≤ B, we get

r(Si−1, OPT \ Si−1) ≤
B

α
·
r(Si−1, ui)

c(Si−1, ui)

It is easy to see that r(OPT ) − r(Si−1) is at most
r(Si−1, OPT \ Si−1). This leads to

r(OPT )− r(Si−1) ≤
B

α
·
r(Si−1, ui)

c(Si−1, ui)

Moving terms around, yields the lemma.

Lemma 3.2. If the overlap condition is satisfied, then

for iterations ji, i = 1, 2, . . . , ℓ + 1,

r(Si) ≥

[

1−
i

∏

k=1

(

1− α
c(Sk−1, uk)

B

)

]

r(OPT )

Proof. The proof follows by induction on the itera-
tions ji, i = 1, 2, . . . , ℓ + 1. For iteration j1 we have
r(S1) = r(S0, u1) and need to prove that r(S1) ≥

α c(S0,u1)
B

r(OPT ). For each user u ∈ U , due the greedy

choice of u1,
r(S0,u)
c(S0,u) is at most r(S0,u1)

c(S0,u1)
. Thus,

∑

u∈OPT

r(S0, u) ≤
r(S0, u1)

c(S0, u1)

∑

u∈OPT

c(S0, u)

Which can be rewritten as:
∑

u∈OPT r(S0, u)
∑

u∈OPT c(S0, u)
≤

r(S0, u1)

c(S0, u1)

And combining with the overlap condition and using the
fact that c(OPT ) ≤ B we get:

r(S0, u1)

c(S0, u1)
≥ α

r(OPT )

B

Thus,

r(S1) = r(S0, u1) ≥ α
c(S0, u1)

B
r(OPT )

Assuming the lemma holds for iterations ji, i =
1, .., i− 1 we show it holds for ji:

r(Si) = r(Si−1) + r(Si−1, ui)

≥ r(Si−1) + α
c(Si−1, ui)

B
(r(OPT ) − r(Si−1))

=

»

1 − α
c(Si−1, ui)

B

–

r(Si−1) +

α
c(Si−1, ui)

B
r(OPT )

≥

»

1 − α
c(Si−1, ui)

B

–

·

"

1 −

i−1
Y

k=1

„

1 − α
c(Sk−1, uk)

B

«

#

r(OPT ) +

α
c(Si−1, ui)

B
r(OPT )

=

"

1 −

i
Y

k=1

„

1 − α
c(Sk−1, uk)

B

«

#

r(OPT )

Theorem 3.2. If an instance of the user-thread graph

G = (U, T,E) satisfies the overlap condition with respect

to an execution of Algorithm GreedyRatio then the

set S of users returned by Algorithm Greedy satisfies

r(S) ≥
1

2

(

1−
1

eα

)

·OPT,

where OPT is the maximum reward associated with any

set of users whose cost is at most the budget B.
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Pairs Triples

Total 271784 68456236
OC Holds 271490(99.98%) 68443062(99.98%)

Min. Factor (α) 0.704 2.96
Avg. Factor (α) 0.647 2.90

Table 1: Results from analyzing the overlap condition
for all pairs and triples of users. OC Holds shows the
number of sets U ′ ⊆ U for which δ+(U ′) ≥ δ−(U ′). Min.

Factor (respectively Avg. Factor) shows the smallest

value (respectively average) value of δ+(U ′)
δ−(U ′) over all U ′.

Proof. Consider iteration ℓ + 1. Using lemma 3.2 and
the fact that c(Sℓ+1) > B we have:

r(Sℓ+1) ≥

"

1 −

ℓ+1
Y

k=1

„

1 − α
c(Sk−1, uk)

B

«

#

r(OPT )

≥

"

1 −

ℓ+1
Y

k=1

„

1 − α
c(Sk−1, uk)

c(Sℓ+1)

«

#

r(OPT )

≥

"

1 −

„

1 −
α

ℓ + 1

«ℓ+1
#

r(OPT )

≥

„

1 −
1

eα

«

r(OPT )

Thus,

r(Sℓ+1) = r(Sℓ) + r(Sℓ, uℓ+1) ≥ (1−
1

eα
)r(OPT )

Since r(S0, uℓ+1) is at most the maximum reward for
a single user we have r(S0, uℓ+1) ≤ r(S′′), the reward
given by GreedyReward. This gives us:

r(Sℓ)+r(S′′) ≥ r(Sℓ)+r(Sℓ, uℓ+1) ≥

(

1−
1

eα

)

r(OPT )

Therefore either the reward given by GreedyRatio,
r(S′) ≥ r(Sℓ) or the reward given by GreedyReward,
r(S′′) is greater than or equal to 1

2

(

1− 1
eα

)

r(OPT ).

The overlap condition, as equivalently stated in
(3.1) and (3.2) is required to be satisfied for every
i and U ′ ⊆ Ui for Theorem 3.2. We “tested” the
overlap condition for the EIN data in a limited way by
considering all pairs and triples of users (see Table 1).

Specifically, when i = 0, Si = ∅, Ui = U and the
overlap condition reduces to

∀U ′ ⊆ U : δ+(U ′) ≥ α · δ−(U ′),

where δ+(U ′) (respectively, δ−(U ′)) is the average de-
gree of the important threads (respectively, unimpor-
tant threads) in the subgraph of G induced by U ′ ∪

N(U ′). As stated, Theorem 3.2 uses the “worst case”
value of the universal constant α. It can be strength-
ened to use the “average” value of α, leading to a better
approximation factor. We postpone further discussion
of this to the full version of the paper.

4 Experiments on BMOC

Choosing a particular threshold thresh (60, 70, or 80),
as described in Section 2.1, induces a partition of the
set of threads into important and unimportant threads.
By fixing a value for the participation parameter m (1,
2, 3, or ∞), as described in Section 2.2, we fix the
threads each individual has participated in. Having
fixed thresh and m, we consider all values of the budget
B, starting with B = 0, until we achieve full coverage of
all important threads. Fixing values for thresh, m, and
B creates an instance of BMOC that we use as input to
Greedy.

4.1 Greedy Performance Figure 4 shows plots for
solutions found by GreedyRatio and GreedyRe-

ward for instances with thresh = 80 and participa-
tion parameter values m = 2 and m = 3. Recall that
Greedy simply returns the better of the solutions pro-
duced by GreedyRatio and GreedyReward. Re-
sults shown here are similar for all thresh and m val-
ues we considered. We can view the reward of a solu-
tion returned by GreedyRatio or GreedyReward

as a function of B. Note that neither of these func-
tions are monotonic in B – simple examples are easy
to construct for both algorithms. As a result, one sim-
ple improvement to these algorithms is to consider all
values B′ = 1, 2, . . . , B as the budget, run GreedyRa-

tio and GreedyReward with each value of B′ as the
budget, and return as a solution, the subset that has
maximum reward over all values of B′. Table 2 focuses
on specific points on the plots in Figure 4, analyzing
these more closely. In particular, this analysis focuses
on points that provide 50%, 75%, and 100% coverage of
the important threads.

4.2 Analysis of Selected Users The majority of
active users on the EIN are doctors either in private
practice, with only clinical responsibilities, or at an aca-
demic institution, where they have clinical and research
responsibilities. Table 3a shows the distribution of users
selected by Greedy (for thresh = 80 and full coverage)
by whether they are at an academic institution, in pri-
vate practice, or elsewhere. These results nicely match
the expectations of the third author that doctors in pri-
vate practice tend to initiate more important threads,
possibly because they have more clinical experience and
have fewer colleagues with whom they can discuss is-
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Figure 4: Plots showing the reward of solutions produced by GreedyRatio and GreedyReward with
thresh = 80 and (a) m = 2 and (b) m = 3. The x-axis shows the budget and the y-axis shows reward. The
black (respectively, red) line shows the reward produced by the GreedyRatio (respectively, GreedyReward)
algorithm. The dotted lines mark points of interest, corresponding to 50%, 75%, and 100% coverage of important
threads, discussed further in Table 2.

thresh m c

50% 75% 100%

80%
(185)

1 164.0 404.0 949.0
2 45.0 148.0 436.0
3 30.0 103.0 363.0
∞ 15.0 60.0 205.0

Table 2: The cost of solutions that achieve 50%, 75%,
and 100% coverage of important threads (corresponding
to points from the plots shown in Figure 4). The key
findings reported in this table are (a) the cost of full
(respectively, 75%) coverage is roughly 10 (respectively,
3) times the cost of half coverage and (b) relaxing the
requirement of early detection (i.e., increasing m from
1 to 3) decreases costs significantly.

sues face-to-face. Such users tend to turn to the EIN
more frequently with important concerns. On the other
hand first responders and later responders in important
threads tend to be evenly distributed between doctors
at academic institutions and those in private practice.
Table 3b shows that selected users (at thresh = 80,
full coverage) are geographically spread out quite evenly
across the U.S. even though geographic coverage was not
a criteria used in our algorithms.

4.3 Analysis of Selected Threads Using the pro-
cedure mentioned in the introduction, the set S of se-
lected users can be used to mark threads as “to be

m Total Academic Private Other Unknown

1 126 30(32.97%) 57(62.64%) 4(4.40%) 35
2 161 34(45.33%) 34(45.33%) 7(9.93%) 86
3 158 36(48.65%) 32(43.24%) 6(8.11%) 84
∞ 186 33(42.86%) 35(45.45%) 9(11.69%) 109

(a)

m Avg Distance (±) Max Distance

2 230.57(±169.23) 885.08
3 212.89(±141.28) 714.59

(b)

Table 3: (a) Distribution of users selected by Greedy

(with thresh = 80, full coverage) by whether they are at
an academic institution, private practice, or elsewhere.
The column Total shows the total number of users
selected by our algorithm. (b) The geographic spread
of users selected by Greedy (with thresh = 80, full
coverage) is shown here. For example, with m = 2,
every point in the continental U.S. is within 231 miles
of a selected user, on average. These statistics were
obtained by sampling 10 million points uniformly at
random; more accurate results can be obtained by
constructing Voronoi diagrams.
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Figure 5: Plots of the number of posts read per day for 2007. The results are from running Greedy with
thresh = 80, full coverage, and (a) m = 2 and (b) m = 3. The black and red marks correspond to posts that are
read; black marks correspond to posts to important threads and red marks correspond to posts to unimportant
threads. The gray marks show the number of posts made to any thread, regardless of whether the thread was
marked.

monitored.” Ideally, we would like the number of “to
be monitored” threads small relative to the total num-
ber of threads. Table 4a shows the number of threads
and posts observed in 2007 and the number of threads
that would have been marked and number of posts that
would have been read, had this procedure been in place
then. For both m = 2 and m = 3, the number of marked
threads are about a fourth of the total and the number
of posts are about a third of the total. The per-day
totals for traffic to the EIN for m = 2 (figure 5a) and
m = 3 (figure 5b) over time for the 2007 year. Of the
posts that are read, more than half are important. Ta-
ble 4b shows, for each value of m, the mailing at which
important threads would have been marked using this
procedure. Together the two tables show that as we go
from m = 2 to m = 3 the cost of monitoring falls (40
threads to 38 threads, 144 posts to 140 posts) accom-
panied by a delay in marking a few threads (5).

4.4 Greedy Versus OPT For instances of BMOC
where the number of neighbors of important threads is
small, OPT can be calculated in a reasonable time (just
by brute force). Figure 6 shows two plots comparing
OPT with solutions returned by Greedy. Note that
in both Figure 6a and Figure 6b, Greedy and OPT
are identical for the most part and when they are not
identical, OPT is only marginally better. Even though

m Total Marked Imp. Unimp.

2
Threads 229 54 14 40
Posts 1015 314 170 144

3
Threads 229 52 14 38
Posts 1015 289 149 140

(a)

m
Mailing Marked
1st 2nd 3rd

2 2 12
3 2 7 5

(b)

Table 4: EIN traffic statistics for the year 2007 for full
coverage at thresh = 80.
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Figure 6: Plots comparing the performance of Greedy with OPT at thresh = 60. The x-axis is the budget and
the y-axis is the reward. The black line shows the reward produced by the Greedy and the shaded line shows
OPT . (a) Participation defined as m = 2 (b) Participation defined as m = 3.

the BMOC problem seems difficult to approximate in
general, our limited experiments show that the Greedy

produces a near-optimal solution for the EIN data.
This may be partly explained by overlap condition
mentioned earlier. A small improvement is obtained by
enhancing Greedy with a small “look-ahead.” That is,
at each step we can consider adding a subset of users,
such as pairs or triples, rather only considering single
users. Figure 7 shows the same plots as in section4.1
with the additional results found by modifying the
GreedyRatio algorithm to consider pairs of users
u, u

′

∈ U at each iteration. While it doesn’t make
a significant improvement overall, the improvements
are noticeable. With a very minor modification to
the algorithm we find a better solution, at the cost of
running time. We could improve this solution further
by considering triples, or larger subsets, of users.

5 Open Problems and Further Analysis

This paper models the problem of monitoring listservs
such as the EIN as a budgeted maximization problem
with overlapping costs (BMOC). There are many re-
finements of the model that seem worth pursuing, e.g.,
clustering the users by geographic locations or via the
social network induced by postings.

On the more algorithmic front we are interested in
the computational complexity of approximating BMOC.
One the positive side, we are interested in designing ap-
proximation algorithms that provide non-trivial approx-
imation guarantees for BMOC. Due to the fact that the

k-densest subgraph problem, for which the best known
approximation is O(n

1
3 ) (see [7]), is reducible to an in-

stance of BMOC, we believe coming up with an approxi-
mation algorithm for BMOC that gives a guarantee bet-
ter than O(n

1
3 ) to be difficult. But at this time, even an

O(nα)-approximation for constant α < 1 is unknown for
BMOC. On the negative side, we are interested in prov-
ing a hardness of approximation result for BMOC that
shows that it is “strictly” harder than Budgeted Maxi-
mum Coverage (BMC). It is known that BMC is inap-
proximable to a factor better than (1− 1

e
) [10]. BMOC

is at least as hard and it is our belief that in general,
BMOC is a much harder problem than BMC due to the
overlapping costs aspect of the problem.
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